

REPORT TO

HEALTH INFRASTRUCTURE

ON

DETAILED SITE INVESTIGATION (DSI)

FOR

PROPOSED NEPEAN CAMHS DEVELOPMENT

AT

NEPEAN HOSPITAL, DERBY STREET, KINGSWOOD, NSW

Date: 24 June 2022 Ref: E33780PLrpt2

JKEnvironments www.jkenvironments.com.au

T: +61 2 9888 5000 JK Environments Pty Ltd ABN 90 633 911 403

Report prepared by:

Harry Leonard

Senior Environmental Scientist

Report reviewed by:

Brendan Page

Principal Associate | Environmental Scientist

CEnvP SC

For and on behalf of JKE PO BOX 976 NORTH RYDE BC NSW 1670

DOCUMENT REVISION RECORD

Report Reference	Report Status	Report Date
E33780PLrpt2	Final Report	24 June 2022

© Document copyright of JK Environments (JKE)

This Report (which includes all attachments and annexures) has been prepared by JKE for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKE and the Client and is therefore subject to:

- a) JKE's proposal in respect of the work covered by the Report;
- b) The limitations defined in the client's brief to JKE; and
- c) The terms of contract between JKE and the Client, including terms limiting the liability of JKE.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKE which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKE does so entirely at their own risk and to the fullest extent permitted by law, JKE accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

Executive Summary

Health Infrastructure ('the client') commissioned JK Environments (JKE) to undertake a Detailed Site Investigation (DSI) for the proposed Nepean CAMHS development at Nepean Hospital, Derby Street, Kingswood, NSW. The purpose of the investigation is to make an assessment of site contamination.

For the purpose of this report, 'the site' refers to the proposed CAMHS development area. The surrounds within the hospital are referred to as the 'wider hospital campus'. The site location is shown on Figure 1 and the investigation was confined to the site boundaries as shown on Figure 2.

This report has been prepared to support the Review of Environmental Factors (REF) for the proposed Nepean CAMHS development, with regards to State Environmental Planning Policy (Resilience and Hazards) 2021¹ (formerly known as SEPP55).

JKE has previously undertaken a preliminary site investigation (PSI) at the site, included a review of historical information and sampling from four borehole locations. Potential sources of contamination and areas of environmental concern (AEC) were identified that triggered a requirement for a DSI.

The primary aims of the investigation were to make an assessment of the soil and groundwater contamination conditions. The objectives were to:

- Assess the soil and groundwater contamination conditions via implementation of a sampling and analysis program;
- Prepare a conceptual site model (CSM);
- Assess the potential risks posed by contamination to the receptors identified in the CSM (Tier 1 assessment);
- Provide a preliminary waste classification for off-site disposal of soil;
- Assess whether the site is suitable or can be made suitable for the proposed development (from a contamination viewpoint); and
- Assess whether further intrusive investigation and/or remediation is required.

The scope of work included the following:

- Review of existing site information from the PSI;
- Preparation of a CSM;
- Design and implementation of a sampling, analysis and quality plan (SAQP);
- Interpretation of the analytical results against the adopted Site Assessment Criteria (SAC);
- Data Quality Assessment; and
- Preparation of a report including a Tier 1 risk assessment.

The DSI included sampling from seven borehole locations and groundwater sampling from three groundwater wells installed for the investigation. No elevations of the contaminants of potential concern (CoPC) above the human-health or ecological based SAC were encountered in the soil samples analysed. Elevations of heavy metals in groundwater were identified above the ecological SAC, however these were considered to be consistent with regional/background groundwater conditions. Soil and groundwater contamination triggering a need for remediation was not identified.

Bonded asbestos containing material (ACM) was previously identified (during the PSI) on the ground surface within the sub-floor of the existing Nepean 2 building in the eastern area of the site. The asbestos-related risks in the context of the current land use were assessed to be low due to the most likely form of the asbestos being ACM (i.e. non-friable) and access to the exposed area currently being restricted (sub-floor). Notwithstanding, any remaining ACM fragments will need to be removed prior to the commencement of construction so that potential risks are adequately mitigated.

Based on the Tier 1 risk assessment, contamination related risks in the context of the current land use and the proposed development were assessed to be low. JKE is of the opinion that the site can be made suitable for the proposed development subject to appropriate implementation of the following recommendations:

¹ State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW) (referred to as SEPP Resilience and Hazards 2021)

- The buildings/structures are to be appropriately demolished and clearance certificates are to be provided following removal of any hazardous building materials. All demolition and clearances should occur prior to removal of the hardstand in order to reduce the potential for cross contamination with the underlying soils;
- Following completion of the demolition works, undertake an 'emu pick' of the site for fragments of fibre cement/ACM at the surface of the site. The pick should be conducted by a suitably licensed asbestos contractor.
 On completion of the pick, a clearance certificate should be issued by a competent person or SafeWork NSW Licensed Asbestos Assessor to ensure the area is free of visible asbestos; and
- Development and implementation of an unexpected finds protocol during the proposed development works.

JKE is of the opinion that there is currently no requirement to report the contamination to the NSW EPA under the NSW EPA Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997 (2015)². This is to be further evaluated as the project proceeds.

The conclusions and recommendations should be read in conjunction with the limitations presented in the body of this report.

JKEnvironments

² NSW EPA, (2015). *Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997* (referred to as Duty to Report Contamination)

Table of Contents

1	IIVIK	ODUCTION	-
	1.1	PROPOSED DEVELOPMENT DETAILS	1
	1.2	AIMS AND OBJECTIVES	2
	1.3	SCOPE OF WORK	2
2	SITE	NFORMATION	3
	2.1	PSI	3
	2.2	SITE IDENTIFICATION	3
	2.3	SUMMARY OF SITE CONDITIONS	4
	2.4	SUMMARY OF GEOLOGY AND HYDROGEOLOGY	5
	2.5	SUMMARY OF SITE HISTORY INFORMATION	5
3	CON	CEPTUAL SITE MODEL	6
	3.1	POTENTIAL CONTAMINATION SOURCES/AEC AND COPC	6
	3.2	MECHANISM FOR CONTAMINATION, AFFECTED MEDIA, RECEPTORS AND EXPOSURE PATHWAYS	7
4	SAMI	PLING, ANALYSIS AND QUALITY PLAN	9
	4.1	DATA QUALITY OBJECTIVES (DQO)	g
	4.2	SOIL SAMPLING PLAN AND METHODOLOGY	11
	4.3	GROUNDWATER SAMPLING PLAN AND METHODOLOGY	13
5	SITE	ASSESSMENT CRITERIA (SAC)	15
	5.1	Soil	15
	5.2	GROUNDWATER	17
6	RESU	LTS	19
	6.1	SUMMARY OF DATA (QA/QC) EVALUATION	19
	6.2	SUBSURFACE CONDITIONS	19
	6.3	FIELD SCREENING	19
	6.4	SOIL LABORATORY RESULTS	20
	6.5	GROUNDWATER LABORATORY RESULTS	23
7	WAS	TE CLASSIFICATION ASSESSMENT	25
	7.1	WASTE CLASSIFICATION OF FILL	25
	7.2	CLASSIFICATION OF NATURAL SOIL AND BEDROCK	25
	7.3	GENERAL INFORMATION	25
8	DISC	noission	26
	8.1	TIER 1 RISK ASSESSMENT AND REVIEW OF CSM	26
	8.2	DECISION STATEMENTS	27
	8.3	Data Gaps	27
9	CON	CLUSIONS AND RECOMMENDATIONS	28
10	LIMIT	TATIONS	29

List of Tables

Table 2-1: Site Identification	3
Table 3-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern	6
Table 3-2: CSM	7
Table 4-1: Soil Sampling Plan and Methodology	11
Table 6-3: Groundwater Sampling Plan and Methodology	13
Table 6-4: Laboratory Details	14
Table 5-1: Details for Asbestos SAC	16
Table 7-2: Waste Categories	17
Table 6-1: Summary of Subsurface Conditions	19
Table 6-2: Summary of Field Screening	19
Table 6-3: Summary of Soil Laboratory Results – Human Health and Environmental (Ecological)	20
Table 6-4: Summary of Soil Laboratory Results Compared to CT and SCC Criteria	22
Table 8-7: Summary of Groundwater Laboratory Results – Human Health and Environmental (Ecological)	23
Tahla 8.1. Data Gan Assessment	27

Attachments

Annend	liv Δ·	Report	Figures
Abbello	IIX A.	report	rigures

Appendix B: Site Information and Site History
Appendix C: Laboratory Results Summary Tables

Appendix D: Borehole Logs

Appendix E: Laboratory Report(s) & COC Documents

Appendix F: Report Explanatory Notes Appendix G: Data (QA/QC) Evaluation Appendix H: Field Work Documents

Appendix I: PSI Information

Appendix J: Guidelines and Reference Documents

Abbreviations

Asbestos Fines/Fibrous Asbestos	AF/FA
Ambient Background Concentrations	ABC
Added Contaminant Limits	ACL
Asbestos Containing Material	ACM
Australian Drinking Water Guidelines	ADWG
Area of Environmental Concern	AEC
Australian Height Datum	AHD
Acid Sulfate Soil	ASS
Above-Ground Storage Tank Below Ground Level	AST BGL
Benzo(a)pyrene Toxicity Equivalent Factor	BaP TEQ
Bureau of Meteorology	BOM BTEX
Benzene, Toluene, Ethylbenzene, Xylene	CEC
Cation Exchange Capacity	
Contaminated Land Management	CLM CoPC
Contaminant(s) of Potential Concern	COC
Chain of Custody Conceptual Site Model	CSM
·	DA
Development Application	DBYD
Dial Before You Dig Data Quality Indicator	DQI
Data Quality Indicator Data Quality Objective	
Detailed Site Investigation	DQO DSI
•	EIL
Ecological Investigation Level	ESL
Ecological Screening Level Environmental Management Plan	EMP
Excavated Natural Material	ENM
Environment Protection Authority	EPA
Environmental Site Assessment	ESA
Fibre Cement Fragment(s)	FCF
General Approval of Immobilisation	GAI
Health Investigation Level	HILS
Health Screening Level	HSL
Health Screening Level-Site Specific Assessment	HSL-SSA
International Organisation of Standardisation	ISO
JK Environments	JKE
Lab Control Spike	LCS
Light Non-Aqueous Phase Liquid	LNAPL
Map Grid of Australia	MGA
National Association of Testing Authorities	NATA
National Environmental Protection Measure	NEPM
Organochlorine Pesticides	OCP
Organophosphate Pesticides	OPP
Polycyclic Aromatic Hydrocarbons	PAH
Potential ASS	PASS
Polychlorinated Biphenyls	PCBs
Per-and Polyfluoroalkyl Substances	PFAS
Photo-ionisation Detector	PID
Protection of the Environment Operations	POEO
Practical Quantitation Limit	PQL
Quality Assurance	QA
Quality Control	QC
Remediation Action Plan	RAP
	IV4I

Relative Percentage Difference	RPD
Site Assessment Criteria	SAC
Sampling, Analysis and Quality Plan	SAQP
Site Audit Statement	SAS
Site Audit Report	SAR
State Environmental Planning Policy	SEPP
Site Specific Assessment	SSA
Source, Pathway, Receptor	SPR
Specific Contamination Concentration	SCC
Standard Penetration Test	SPT
Standing Water Level	SWL
Trip Blank	ТВ
Toxicity Characteristic Leaching Procedure	TCLP
Total Recoverable Hydrocarbons	TRH
Trip Spike	TS
Upper Confidence Limit	UCL
United States Environmental Protection Agency	USEPA
Underground Storage Tank	UST
Virgin Excavated Natural Material	VENM
Volatile Organic Compounds	VOC
World Health Organisation	WHO
Work Health and Safety	WHS

Units

Onits	
Litres	L
Metres BGL	mBGL
Metres	m
Millivolts	mV
Millilitres	ml or mL
Milliequivalents	meq
micro Siemens per Centimetre	μS/cm
Micrograms per Litre	μg/L
Milligrams per Kilogram	mg/kg
Milligrams per Litre	mg/L
Parts Per Million	ppm
Percentage	%
Percentage weight for weight	%w/w

1 INTRODUCTION

Health Infrastructure ('the client') commissioned JK Environments (JKE) to undertake a Detailed Site Investigation (DSI) for the proposed Nepean CAMHS development at Nepean Hospital, Derby Street, Kingswood, NSW. The purpose of the investigation is to make an assessment of site contamination.

For the purpose of this report, 'the site' refers to the proposed CAMHS development area. The surrounds within the hospital are referred to as the 'wider hospital campus'. The site location is shown on Figure 1 and the investigation was confined to the site boundaries as shown on Figure 2.

This report has been prepared to support the Review of Environmental Factors (REF) for the proposed Nepean CAMHS development, with regards to State Environmental Planning Policy (Resilience and Hazards) 2021³ (formerly known as SEPP55).

A geotechnical investigation was undertaken previously to this DSI by JK Geotechnics (JKG). The results of the geotechnical investigation are presented in a separate report (Ref: 33780LTrpt, dated 17 May 2021)⁴. This report should be read in conjunction with the JKG report.

JKE has previously undertaken a Hazardous Building Materials Survey (Ref: E33780PLrpt-HAZ, dated February 2021)⁵ and a preliminary site investigation (PSI) (Ref: E33780PLrpt, dated 14 May 2021)⁶ at the site. A summary of this information has been included in Section 2.

1.1 Proposed Development Details

From the architectural drawings and information provided, we understand that the CAMHS development will consist of a two-storey building with an under-croft basement. The approximate extent of the proposed building is shown on the attached Figure 2. We note that the site boundary may be adjusted slightly in future from that shown on Figures 1 and 2.

Excavation to achieve the ground floor level will be to maximum depths of approximately 1m below ground level (BGL) at the western end, and reducing to the east with the eastern third of the building to be above existing ground levels. Locally deeper excavation will be required for the proposed lift pit.

New pavements will be constructed around the eastern and northern sides of the new building. Existing trees along the southern boundary and north-eastern boundary of the site have been classed as tree protection zones (TPZ) and area to be retained. Although no specific landscaped areas are proposed as part of the development, there is uncertainty around the final finishing process for the TPZ's and whether these will fall within the final site boundary. Please refer to the development plans attached in the appendices.

⁶ JKE, (2021). Report to Health Infrastructure c/- CBRE on Preliminary (Stage 1) Site Investigation for Proposed Nepean CAMHS Development at Nepean Hospital, Derby Street, Kingswood, NSW. (Ref: E33780PLrpt) (referred to as PSI)

³ State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW) (referred to as SEPP Resilience and Hazards 2021)

⁴ JKG, (2021). Report to Health Infrastructure on Geotechnical Investigation for Proposed CAMHS Development at Nepean Hospital, Derby Street, Kingswood, NSW. (referred to as JKG report)

⁵ JKE, (2021). Report to Health Infrastructure c/- CBRE on Hazardous Building Materials Survey for Proposed Nepean CAMHS Development at Nepean Hospital, Derby Street, Kingswood, NSW. (Ref: E33780PLrpt-HAZ) (referred to as Hazmat)

1.2 Aims and Objectives

The primary aims of the investigation were to make an assessment of the soil and groundwater contamination conditions. The objectives were to:

- Assess the soil and groundwater contamination conditions via implementation of a sampling and analysis program;
- Prepare a conceptual site model (CSM);
- Assess the potential risks posed by contamination to the receptors identified in the CSM (Tier 1 assessment);
- Provide a preliminary waste classification for off-site disposal of soil;
- Assess whether the site is suitable or can be made suitable for the proposed development (from a contamination viewpoint); and
- Assess whether further intrusive investigation and/or remediation is required.

1.3 Scope of Work

The investigation was undertaken generally in accordance with a JKE proposal (Ref: EP55874PL) of 4 February 2022 and written acceptance from the client of 22 June 2022. The scope of work included the following:

- Review of existing site information from the PSI;
- Preparation of a CSM;
- Design and implementation of a sampling, analysis and quality plan (SAQP);
- Interpretation of the analytical results against the adopted Site Assessment Criteria (SAC);
- Data Quality Assessment; and
- Preparation of a report including a Tier 1 risk assessment.

The scope of work was undertaken with reference to the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)⁷, other guidelines made under or with regards to the Contaminated Land Management Act (1997)⁸ and SEPP Resilience and Hazards 2021. A list of reference documents/guidelines is included in the appendices.

⁷ National Environment Protection Council (NEPC), (2013). *National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013)*. (referred to as NEPM 2013)

⁸ Contaminated Land Management Act 1997 (NSW) (referred to as CLM Act 1997)

2 SITE INFORMATION

2.1 PSI

The PSI included a review of site information and soil sampling from four borehole locations (the PSI borehole locations are shown on Figure 2). Historical reports were reviewed for the PSI, including a Preliminary Environmental Site Assessment (ESA) of the wider hospital campus conducted by JKE in 2017. The 2017 ESA report also referenced and included review of two previous contamination reports prepared by Golder Associates which covered other portions of the wider hospital campus, with some overlap into the site area.

The site has historically been vacant or used for grazing/agricultural purposes. The site was then developed as part of the wider hospital campus from sometime prior to 1970 and has been part of the hospital to the present day.

The historical storage of flammable liquids (notably xylene), an underground storage tank (UST) (within the wider hospital campus) and detectable concentrations of xylene within groundwater were identified during previous investigations by Golder (within the wider hospital campus). The previous investigations did not identify significant, widespread contamination in fill.

The PSI identified bonded asbestos containing material (ACM) on the ground surface within the sub-floor of the existing Nepean 2 building in the eastern area of the site (see sample 8 on Figure 3). The ACM was sampled as part of the Hazmat survey, please refer to the Hazmat report for the relevant laboratory results. Based on the Tier 1 risk assessment, it was concluded that the contamination identified at the site may pose a risk to human-health if the contamination is not managed properly during the construction phase of the proposed development. The asbestos-related risks in the context of the current land use were assessed to be low due to the most likely form of the asbestos being bonded ACM (i.e. non-friable) and access to the exposed area currently being restricted (sub-floor).

A DSI was recommended to be undertaken at the site to address the data gaps, including meeting the minimum EPA sampling density and groundwater sampling.

The tabulated laboratory results and borehole logs from the PSI are provided in Appendix I.

2.2 Site Identification

Table 2-1: Site Identification

Current Site Owner (certificate of title):	Health Infrastructure NSW
Site Address:	Derby Street, Kingswood, NSW
Lot & Deposited Plan:	Part of Lot 4 in DP1238301
Current Land Use:	Hospital
Proposed Land Use:	Hospital
Local Government Authority:	Penrith City Council

Current Zoning:	SP2: Infrastructure
Site Area (m²) (approx.):	3,500m ²
RL (AHD in m) (approx.):	52-56
Geographical Location (decimal degrees) (approx.):	Latitude: -33.760651 Longitude: 150.71437
	0
Site Location Plan:	Figure 1
Sample Location Plan:	Figure 2
SAC Exceedance Plan:	Figure 3
Plan of Notable Features from Previous Investigations:	Figure 4

2.3 Summary of Site Conditions

The site is located within the grounds of the wider hospital campus and is bound by and internal service road to the north and a staff car park and Derby Street to the south. The site is located approximately 450m to the north-west of a small tributary to Werrington Creek.

The regional topography is gently undulating characterised by a local ridgeline that runs on a north-south orientation, roughly along Parker Street and the Northern Road. The site itself consisted of a gentle slope down towards the south-east with a gradient of approximately 2°.

At the time of the inspection, the majority of site was occupied by two hospital buildings named 'Nepean 1' which contained staff payroll to the west and 'Nepean 2' which contained ICT education and training centre to the east (see Figure 2). The space between the buildings and around the boundaries of the site contained landscaped garden beds and paved footpaths, with scattered large native trees around the perimeter. No signs or indicators of former land use other than a hospital were identified.

The site was mostly paved around the boundaries with some small areas of landscaped garden bed along the southern boundary. No signs of erosion or soil wash was encountered at the time of the site inspections. The storage of chemicals (other than very small quantities of cleaning products), fuel or waste was not encountered at the time of the site inspections. The Golder 2010a and Golder 2010b reports identified historical USTs in other areas of the wider hospital campus. However, no obvious indicators of active or former USTs were observed during the inspection.

Portions of the site may have historically been cut and/or filled to create a level platform for the existing buildings, particularly in the western portion of the site at the higher end of the slope. Several fibre cement fragments (FCF) were identified within the sub-floor of the Nepean 2 building. A representative sample of FCF was collected (see sample S8 on Figure 3) as part of the Hazmat conducted by JKE during the PSI in 2021. The FCF was found to contain asbestos and was considered to be bonded ACM, and in reasonable condition.

The surround areas of the site included: Internal service road and 'East Block' to the north; staff car park and Derby Street to the south; hospital multi-storey car park to the east; and the Nepean Hospital Mental Health Centre to the west. JKE did not observe any land uses in the immediate surrounds that were identified as potential contamination sources for the site.

2.4 Summary of Geology and Hydrogeology

Regional geological information was reviewed for the PSI. The information indicated that the site is underlain by Bringelly Shale of the Wianamatta Group, which typically consists of shale, carbonaceous claystone, claystone, laminite, fine to medium grained lithic sandstone, rare coal and tuff.

The site is not located in an ASS risk area according to the risk maps prepared by the Department of Land and Water Conservation.

Salinity information presented in the PSI indicated that the site is located within an area of moderate salinity potential.

The information reviewed for the PSI indicated that the subsurface conditions at the site are likely to consist of fill overlying relatively low permeability (residual) soils and shallow bedrock. The boreholes drilled for the PSI supported this, identifying silty clay soils over relatively shallow bedrock. The potential for viable groundwater abstraction and use of groundwater under these conditions is considered to be low. There is a reticulated water supply in the area and consumption of groundwater is not expected to occur. Use of groundwater is not proposed as part of the development.

Considering the local topography and surrounding land features, JKE anticipate groundwater to flow towards the north or north-east. Surface water bodies were not identified in the immediate vicinity of the site. The closest surface water body is the tributary to Werrington Creek located approximately 450m to the southeast of the site. This is cross-gradient from site and is considered unlikely to be a potential receptor.

2.5 Summary of Site History Information

Based on the information reviewed and a weight of evidence assessment of the site history documentation (including that from the PSI), and site observations made by JKE, we consider that the site has been historically vacant or used for grazing purposes since at least 1943 and it is presumed to have been of similar use before this time.

The site was then included in part of the Nepean Hospital Campus around 1949, however development on the site itself did not occur until sometime between 1970 and 1978. The construction of the existing Nepean 2 building occurred sometime between 1978 and 1991 and the construction of the service delivery ramp in the west of the site occurring sometime between 2015 and 2020. Potential cut and fill works may have taken place at any stage during these development works.

The immediate surrounds appeared to have been used for similar purposes, as part of the wider Nepean Hospital campus.

3 CONCEPTUAL SITE MODEL

NEPM (2013) defines a CSM as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM for the site is presented in the following sub-sections and is based on the site information (including the site inspection information) and the review of site history information. Reference should also be made to the figures attached in the appendices.

A review of the CSM in relation to source, pathway and receptor (SPR) linkages has been undertaken as part of the Tier 1 risk assessment process, as outlined in Section 8.

3.1 Potential Contamination Sources/AEC and CoPC

The potential contamination sources/AEC and CoPC are presented in the following table:

Table 3-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern

Source / AEC	CoPC
Fill material – The PSI identified fill to depths of between approximately 0.5mBGL and 2.1mBGL. The fill may have been imported from various sources and could be contaminated. The PSI did not identify significant, widespread contamination in fill. However, ACM/FCF was found on the surface of the site. It is unclear whether this ACM was associated with fill or surface impacts from hazardous building materials/demolition.	Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), petroleum hydrocarbons (referred to as total recoverable hydrocarbons – TRHs), benzene, toluene, ethylbenzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), polychlorinated biphenyls (PCBs) and asbestos.
Off-site sources of contamination (within the wider hospital campus) — Historical records and findings from the previous investigations identified: bulk diesel storage and flammable liquids (notably xylene) in the north-western section and of the wider hospital campus; at least one UST was identified within the wider hospital campus; and detectable concentrations of xylene in ground water as identified in BH102 in the Golder 2010b investigation. Refer to Figure 4 for the locations of these off-site sources.	Lead, TRH, BTEX, PAHs and BTEX
Historical agricultural use – The site may have been historically used for grazing purposes prior to 1949. This could have resulted in contamination across the site via use of machinery, application of pesticides, installation of pipework containing asbestos etc. Use of pesticides – Pesticides may have been used beneath the buildings and/or around the site for typical pest control applications.	Heavy metals, TRH, PAHs, OCPs, PCBs and asbestos JKE note that OCPs only became commercially available in the 1940s. Prior to this time pesticides were predominantly heavy metal compounds. Heavy metals and OCPs
Hazardous Building Material – FCF/ACM and demolition debris were identified on the ground surface within the sub-floor of the Nepean 2 building during the PSI. Asbestos building materials and light fittings potentially	Asbestos, lead and PCBs

Source / AEC	CoPC
containing PCBs have been identified with the existing buildings/structures on site.	

3.2 Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways

The mechanisms for contamination, affected media, receptors and exposure pathways relevant to the potential contamination sources/AEC are outlined in the following CSM table:

Table 3-2: CSM

Table 3-2: CSM	,	
Potential mechanism for contamination	 Potential mechanisms for contamination include: Fill material – importation of impacted material, 'top-down' impacts (e.g. placement of fill, leaching from surficial material etc), or sub-surface release (e.g. impacts from buried material); Off-site (wider hospital campus) sources (fuel storage/xylene impacts) – 'top-down', spills (e.g. during filling of the tanks and/or dispensing activities), or sub-surface release (e.g. from leaking tank or pipework); Historical agricultural use – 'top-down' and spills (e.g. application of pesticides, refuelling or repairing machinery, and other activities at the ground surface level); Use of pesticides – 'top-down' and spills (e.g. during normal use, application and/or improper storage); and Hazardous building materials – 'top-down' (e.g. demolition resulting in surficial impacts in unpaved areas). 	
Affected media	Soil and groundwater have been identified as potentially affected media. It is noted that some of the CoPC are volatile and may affect soil vapour. Soil vapour would need to be considered depending on the contamination status of soil/groundwater.	
Receptor identification	Human receptors include site occupants/users (including primarily adults), construction workers and intrusive maintenance workers. Off-site human receptors include adjacent land users within the same/similar land use setting. Use of the site by children may occur, however is expected to be infrequent. This has been discussed further later in this report. Ecological receptors include terrestrial organisms and plants within unpaved areas. This has been included to incorporate the potential tree protection zones (TPZ) and any associated landscaping which may occur in these areas.	
Potential exposure pathways	Potential exposure pathways relevant to the human receptors include ingestion, dermal absorption and inhalation of dust (all contaminants) and vapours (volatile TRH, naphthalene and BTEX). The potential for exposure would typically be associated with the construction and excavation works, and future use of the site. Potential exposure pathways for ecological receptors include primary/direct contact and ingestion. Exposure during future site use could occur via inhalation of vapours within enclosed spaces such as buildings and basements. This pathway would only be a consideration	

	if elevated concentrations of volatile contaminants be identified in soil or groundwater.
Potential exposure mechanisms	 The following have been identified as potential exposure mechanisms for site contamination: Vapour intrusion into the proposed basement and/or building (either from soil contamination or volatilisation of contaminants from groundwater); and Contact (dermal, ingestion or inhalation) during construction and/or with exposed soils in the TPZ's and associated unpaved areas. Whilst there are no surface water bodies in the immediate vicinity and no associated receptors, we have assessed the groundwater data against relevant ecological criteria for screening purposes.

4 SAMPLING, ANALYSIS AND QUALITY PLAN

4.1 Data Quality Objectives (DQO)

Data Quality Objectives (DQOs) were developed to define the type and quality of data required to achieve the project objectives outlined in Section 1.2. The DQOs were prepared with reference to the process outlined in Schedule B2 of NEPM (2013). The seven-step DQO approach for this project is outlined in the following sub-sections.

The DQO process is validated in part by the Data Quality Assurance/Quality Control (QA/QC) Evaluation. The Data (QA/QC) Evaluation is summarised in Section 6.1 and the detailed evaluation is provided in the appendices.

4.1.1 Step 1 - State the Problem

The CSM identified potential sources of contamination/AEC at the site that may pose a risk to human health and the environment. Investigation data is required to assess the contamination status of the site, assess the risks posed by the contaminants in the context of the proposed development/intended land use, and assess whether remediation is required. This information will be considered by the consent authority in exercising its planning functions in relation to the development proposal.

A waste classification is required prior to off-site disposal of excavated soil/bedrock.

The DQOs were developed by the author of this report and checked by the reviewer. Both the author and reviewer were joint decision-makers in relation to Step 2 of the DQO process.

The investigation was constrained by access limitations associated with the existing structures on site.

4.1.2 Step 2 - Identify the Decisions of the Study

The objectives of the investigation are outlined in Section 1.2. The decisions to be made reflect these objectives and are as follows:

- Are any results above the SAC?
- Do potential risks associated with contamination exist, and if so, what are they?
- Is remediation required?
- Is the site suitable for the proposed development, or can the site be made suitable subject to further characterisation and/or remediation?

4.1.3 Step 3 - Identify Information Inputs

The primary information inputs required to address the decisions outlined in Step 2 include the following:

- Existing relevant environmental data from previous reports;
- Site information, including site observations and site history documentation;
- Sampling of potentially affected media, including soil and groundwater;
- Observations of sub-surface variables such as soil type, photo-ionisation detector (PID) concentrations, odours and staining, and groundwater physiochemical parameters;

- Laboratory analysis of soils, fibre cement and groundwater for the CoPC identified in the CSM; and
- Field and laboratory QA/QC data.

4.1.4 Step 4 - Define the Study Boundary

The sampling was confined to the site boundaries as shown in Figure 2 (spatial boundary). The sampling was completed between 28 May 2022 and 6 June 2022 (temporal boundary). The assessment of potential risk to adjacent land users has been made based on data collected within the site boundary.

4.1.5 Step 5 - Develop an Analytical Approach (or Decision Rule)

4.1.5.1 Tier 1 Screening Criteria

The laboratory data will be assessed against relevant Tier 1 screening criteria (referred to as SAC), as outlined in Section 5. Exceedances of the SAC do not necessarily indicate a requirement for remediation or a risk to human health and/or the environment. Exceedances are considered in the context of the CSM and valid SPR-linkages.

For this investigation, the individual results have been assessed as either above or below the SAC. Statistical evaluation of the dataset via calculation of mean values and/or 95% upper confidence limit (UCL) values has not been undertaken due to the non-probabilistic sampling plan that had to be implemented to account for access constraints. Exceedances of the SAC are consider in conjunction with our lines of evidence as applicable in order to establish whether there is a risk.

4.1.5.2 Field and Laboratory QA/QC

Field QA/QC included analysis of inter-laboratory duplicates, intra-laboratory duplicates, trip spike, trip blank and rinsate samples. Further details regarding the sampling and analysis undertaken, and the acceptable limits adopted, is provided in the Data Quality (QA/QC) Evaluation in the appendices.

The suitability of the laboratory data is assessed against the laboratory QA/QC criteria which is outlined in the attached laboratory reports. These criteria were developed and implemented in accordance with the laboratory's National Association of Testing Authorities, Australia (NATA) accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

In the event that acceptable limits are not met by the laboratory analysis, other lines of evidence are reviewed (e.g. field observations of samples, preservation, handling etc) and, where required, consultation with the laboratory is undertaken in an effort to establish the cause of the non-conformance. Where uncertainty exists, JKE typically adopt the most conservative concentration reported (or in some cases, consider the data from the affected sample as an estimate).

4.1.5.3 Appropriateness of Practical Quantitation Limits (PQLs)

The PQLs of the analytical methods are considered in relation to the SAC to confirm that the PQLs are less than the SAC. In cases where the PQLs are greater than the SAC, a discussion of this is provided.

4.1.6 Step 6 – Specify Limits on Decision Errors

To limit the potential for decision errors, a range of quality assurance processes are adopted. A quantitative assessment of the potential for false positives and false negatives in the analytical results is undertaken with reference to Schedule B(3) of NEPM (2013) using the data quality assurance information collected.

Decision errors can be controlled through the use of hypothesis testing. The test can be used to show either that the baseline condition is false or that there is insufficient evidence to indicate that the baseline condition is false. The null hypothesis is an assumption that is assumed to be true in the absence of contrary evidence. For this investigation, the null hypothesis has been adopted which is that, there is considered to be a complete SPR linkage for the CoPC identified in the CSM unless this linkage can be proven not to (or unlikely to) exist. The null hypothesis has been adopted for this investigation.

Quantitative limits on decision errors were not established as the sampling plan was non-probabilistic.

Data Quality Indicators (DQI) for field and laboratory QA/QC samples are defined in the QA/QC Data Evaluation in the appendices. An assessment of the DQI's was made in relation to precision, accuracy, representativeness, completeness and comparability.

4.1.7 Step 7 - Optimise the Design for Obtaining Data

The most resource-effective design will be used in an optimum manner to achieve the investigation objectives. Adjustment of the investigation design can occur following consultation or feedback from project stakeholders. For this investigation, the design was optimised via consideration of the various lines of evidence used to select the sample locations, the media being sampled, and also by the way in which the data were collected.

The sampling plan and methodology are outlined in the following sub-sections.

4.2 Soil Sampling Plan and Methodology

The soil sampling plan and methodology adopted for this investigation is outlined in the table below:

Table 4-1: Soil Sampling Plan and Methodology

Aspect	Input
Sampling	Samples for the DSI were obtained from seven locations as shown on the attached Figure 2. This
Density	number of locations, combined with the four locations for the PSI, meets the minimum sampling
	density for hotspot identification, as outlined in the NSW EPA Contaminated Sites Sampling Design
	Guidelines (1995) ⁹ . However, we note that the sampling plan was non-probabilistic, therefore the
	minimum sampling density which is applicable to hotspot identification is not strictly applicable.
Sampling Plan	The sampling locations were placed on a judgemental sampling plan and were broadly positioned
	for site coverage, taking into consideration areas that were not easily accessible (i.e. beneath
	existing buildings). This sampling plan was considered suitable to make an assessment of potential

⁹ NSW EPA, (1995), Contaminated Sites Sampling Design Guidelines. (referred to as EPA Sampling Design Guidelines 1995)

Aspect	Input
	risks associated with the AEC and CoPC identified in the CSM, and assess whether further investigation is warranted.
Set-out and Sampling Equipment	Sampling locations were set out using a tape measure. In-situ sampling locations were checked for underground services by an external contractor prior to sampling.
	Samples were collected using a combination of hand equipment in areas where access was restricted, and a drill rig equipped with spiral flight augers (150mm diameter). Soil samples were obtained from a Standard Penetration Test (SPT) split-spoon sampler, and/or directly from the auger.
Sample Collection and Field QA/QC	Soil samples were obtained on 28 May 2022 and 4 June 2022 in accordance with our standard field procedures. Soil samples were collected from the fill and natural profiles based on field observations. The sample depths are shown on the logs attached in the appendices.
	Samples were placed in glass jars with plastic caps and teflon seals with minimal headspace. Samples for asbestos analysis were placed in zip-lock plastic bags. During sampling, soil at selected depths was split into primary and duplicate samples for field QA/QC analysis. The field splitting procedure included alternately filling the sampling containers to obtain a representative split sample.
Field Screening	A portable Photoionisation Detector (PID) fitted with a 10.6mV lamp was used to screen the samples for the presence of volatile organic compounds (VOCs). PID screening for VOCs was undertaken on soil samples using the soil sample headspace method. VOC data was obtained from partly filled zip-lock plastic bags following equilibration of the headspace gases. PID calibration records are maintained on file by JKE.
	 The field screening for asbestos quantification included the following: A representative bulk sample was collected from fill at 1m intervals, or from each distinct fill profile. The quantity of material for each sample varied based on whatever return could be achieved using the auger. The bulk sample intervals are shown on the attached borehole logs; Each sample was weighed using an electronic scale; Each bulk sample was passed through a sieve with a 7.1mm aperture and inspected for the presence of fibre cement; The condition of fibre cement or any other suspected asbestos materials was noted on the field records; and If observed, any fragments of fibre cement in the bulk sample were collected, placed in a ziplock bag and assigned a unique identifier. Calculations for asbestos content were undertaken based on the requirements outlined in Schedule B1 of NEPM (2013), as summarised in Section 5.1.
	A calibration/check of the accuracy of the scale used for weighing the fibre cement fragments was undertaken using a set of calibration weights. Calibration/check records are maintained on file by JKE. The scale used to weigh the 10L samples was not calibrated, however this is not considered significant as this method of providing a weight for the bulk sample is considered to be considerably more accurate than applying a nominal soil density conversion.

Aspect	Input
Decontami- nation and	Sampling personnel used disposable nitrile gloves during sampling activities.
Sample Preservation	Soil samples were preserved by immediate storage in an insulated sample container with ice. On completion of the fieldwork, the samples were stored temporarily in fridges in the JKE warehouse before being delivered in the insulated sample container to a NATA registered laboratory for analysis under standard chain of custody (COC) procedures.

4.3 Groundwater Sampling Plan and Methodology

The groundwater sampling plan and methodology is outlined in the table below:

Table 4-2: Groundwater Sampling Plan and Methodology

Aspect	Input
Sampling Plan	Groundwater monitoring wells were installed in BH601 (MW601) and BH603 (MW603) by JKG at the time of the PSI and a third well was installed in BH701 (MW107) during the DSI. The wells were positioned to gain a snap-shot of the groundwater conditions. Considering the topography and the location of the nearest down-gradient water body, MW601 was considered to be in the up-gradient area of the site and would be expected to provide an indication of groundwater flowing onto (beneath) the site from the west. MW603 and MW701 were considered to be in the intermediate to down-gradient area of the site and would be expected to provide an indication of groundwater flowing across (beneath) the site and beyond the down-gradient site boundary.
Monitoring Well Installation Procedure	The monitoring well construction details are documented on the appropriate borehole logs attached in the appendices. The monitoring wells were installed to depths of approximately 5.92mBGL to 10mBGL. The wells were generally constructed as follows: • 50mm diameter Class 18 PVC (machine slotted screen) was installed in the lower section of
	 the well to intersect groundwater; 50mm diameter Class 18 PVC casing was installed in the upper section of the well (screw fixed); A 2mm sand filter pack was used around the screen section for groundwater infiltration; A hydrated bentonite seal/plug was used on top of the sand pack to seal the well; and A gatic cover was installed at the surface with a concrete plug to limit the inflow of surface water.
	The monitoring well installation, including the screen lengths, were considered suitable for assessment of general groundwater quality with regards to Table 5 in Schedule B2 of NEPM 2013.
Monitoring Well Development	The monitoring wells were developed on 28 May 2022 using a submersible electrical pump. Due to the hydrogeological conditions, groundwater inflow into the wells was relatively low, therefore the wells were pumped until they were effectively dry.
	The field monitoring records and calibration data are attached in the appendices.
Groundwater Sampling	The monitoring wells were allowed to recharge for approximately nine days after development. Groundwater samples were obtained on 6 June 2022.
	Prior to sampling, the monitoring wells were checked for the presence of Light Non-Aqueous Phase Liquids (LNAPLs) using an inter-phase probe electronic dip meter. The monitoring well head space was checked for VOCs using a calibrated PID unit. The samples were obtained using a

Aspect	Input
	peristaltic pump. During sampling, the following parameters were monitored using calibrated field instruments: • Standing water level (SWL) using an electronic dip meter; and
	 pH, temperature, electrical conductivity (EC), dissolved oxygen (DO) and redox potential (Eh) using a YSI Multi-probe water quality meter.
	Groundwater samples were obtained directly from the single use PVC tubing and placed in the sample containers. Duplicate samples were obtained by alternate filling of sample containers. This technique was adopted to minimise disturbance of the samples and loss of volatile contaminants associated with mixing of liquids in secondary containers, etc.
	Groundwater removed from the wells during development and sampling was transported to JKE in jerry cans and stored in holding drums prior to collection by a licensed waste water contractor for off-site disposal.
	The field monitoring record and calibration data are attached in the appendices.
Decontaminant and Sample Preservation	During development, the pump was flushed between monitoring wells with potable water (single-use tubing was used for each well). The pump tubing was discarded after each sampling event and replaced therefore no decontamination procedure was considered necessary.
	The samples were preserved with reference to the analytical requirements and placed in an insulated container with ice or ice bricks. On completion of the fieldwork, the samples were temporarily stored in a fridge at the JKE office, before being delivered in the insulated sample container to a NATA registered laboratory for analysis under standard COC procedures.

4.3.1 Laboratory Analysis

Samples were analysed by an appropriate, NATA Accredited laboratory using the analytical methods detailed in Schedule B(3) of NEPM 2013. Reference should be made to the laboratory reports attached in the appendices for further details.

Table 4-3: Laboratory Details

Samples	Laboratory	Report Reference
All primary samples and field QA/QC samples including (intra-laboratory duplicates, trip blanks, trip spikes and field rinsate samples)	Envirolab Services Pty Ltd NSW, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	296694, 297282 & 297295
Inter-laboratory duplicates	Envirolab Services Pty Ltd VIC, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	31757 & 31872

5 SITE ASSESSMENT CRITERIA (SAC)

The SAC were derived from the NEPM 2013 and other guidelines as discussed in the following sub-sections. The guideline values for individual contaminants are presented in the attached report tables and further explanation of the various criteria adopted is provided in the appendices.

The guidelines on specific land use scenarios outlined in the NEPM 2013, Schedule B7, Section 3.2.5.3, state that:

"Adults of working age are the population usually most sensitive to health risks associated with soil contamination within the generic commercial/industrial land use scenario. Although many commercial premises welcome children on an intermittent basis, it is unlikely that children visit the majority of workplaces frequently. Similarly, in commercial premises where children are regular visitors, such as shopping centres, both the duration and frequency of child exposures are generally lower than that of a full-time adult employee."

"In accordance with the recommendations outlined in enHealth (2004), the adult employees addressed in the HIL D values have been considered to work within the same commercial/industrial premises for their full working life (30 years). The HILs developed for the commercial/industrial land use scenario are not applicable to a site used frequently by more sensitive groups such as children (within childcare centres, hospitals and hotels) and the elderly (within hospitals, aged care facilities and hospices)."

For this proposed development and associated land use at the site, we have adopted the commercial/industrial human-health and ecological SAC. This SAC is based on the proposed land use as a mental health service facility which will welcome children on an intermittent basis (for appointments) and it is unlikely that children will be visiting the site frequently or for extended time periods.

5.1 Soil

Soil data were compared to relevant Tier 1 screening criteria in accordance with NEPM (2013) as outlined below.

5.1.1 Human Health

- Health Investigation Levels (HILs) for a 'commercial/industrial' exposure scenario (HIL-D);
- Health Screening Levels (HSLs) for a 'commercial/industrial' exposure scenario (HSL-D). HSLs were
 calculated based on conservative assumptions including a 'sand' type and a depth interval of 0m to
 1m;
- HSLs for direct contact presented in the CRC Care Technical Report No. 10 Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document (2011)¹⁰; and
- Asbestos was assessed against the HSL-D criteria. A summary of the asbestos criteria is provided in the table below:

¹⁰ Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC Care), (2011). Technical Report No. 10 - Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

Table 5-1: Details for Asbestos SAC

Guideline	Applicability	
Asbestos in Soil	The HSL-D criteria were adopted for the assessment of asbestos in soil. The SAC adopted for asbestos were derived from the NEPM 2013 and are based on the Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (2021) ¹¹ . The SAC include the following: No visible asbestos at the surface/in the top 10cm of soil; <0.05% w/w bonded asbestos containing material (ACM) in soil; and <0.001% w/w asbestos fines/fibrous asbestos (AF/FA) in soil. Concentrations for bonded ACM concentrations in soil are based on the following equation which is presented in Schedule B1 of NEPM (2013):	
	% w/w asbestos in soil = % asbestos content x bonded ACM (kg) Soil volume (L) x soil density (kg/L)	
	However, we are of the opinion that the actual soil volume in a 10L bucket varies considerably due to the presence of voids, particularly when assessing cohesive soils. Therefore, each bucket sample was weighed using electronic scales and the above equation was adjusted as follows (we note that the units have also converted to grams):	
	% w/w asbestos in soil =	

5.1.2 Environment (Ecological – terrestrial ecosystems)

- Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs) for a 'commercial/industrial' exposure scenario. These have only been applied to the top 2m of soil as outlined in NEPM (2013). The criterion for benzo(a)pyrene has been increased from the value presented in NEPM (2013) based on the Canadian Soil Quality Guidelines¹²;
- ESLs were adopted based on the soil type;
- EILs for selected metals were calculated based on the most conservative added contaminant limit (ACL) values presented in Schedule B(1) of NEPM (2013) and published ambient background concentration (ABC) values presented in the document titled Trace Element Concentrations in Soils from Rural and Urban Areas of Australia (1995)¹³. This method is considered to be adequate for the Tier 1 screening.

5.1.3 Management Limits for Petroleum Hydrocarbons

Management limits for petroleum hydrocarbons (as presented in Schedule B1 of NEPM 2013) were considered.

¹³ Olszowy, H., Torr, P., and Imray, P., (1995), *Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4*. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

¹¹ Western Australian (WA) Department of Health (DoH), (2021). *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia.* (referred to as WA DoH 2021)

¹² Canadian Council of Ministers of the Environment, (1999). Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997) (referred to as the Canadian Soil Quality Guidelines)

5.1.4 Waste Classification

Data for the waste classification assessment were assessed in accordance with the Waste Classification Guidelines, Part 1: Classifying Waste (2014)¹⁴ as outlined in the following table:

Table 5-2: Waste Categories

Category	Description
General Solid Waste (non-putrescible)	 If Specific Contaminant Concentration (SCC) ≤ Contaminant Threshold (CT1) then Toxicity Characteristics Leaching Procedure (TCLP) not needed to classify the soil as general solid waste; and If TCLP ≤ TCLP1 and SCC ≤ SCC1 then treat as general solid waste.
Restricted Solid Waste (non-putrescible)	 If SCC ≤ CT2 then TCLP not needed to classify the soil as restricted solid waste; and If TCLP ≤ TCLP2 and SCC ≤ SCC2 then treat as restricted solid waste.
Hazardous Waste	 If SCC > CT2 then TCLP not needed to classify the soil as hazardous waste; and If TCLP > TCLP2 and/or SCC > SCC2 then treat as hazardous waste.
Virgin Excavated Natural Material (VENM)	 Natural material (such as clay, gravel, sand, soil or rock fines) that meet the following: That has been excavated or quarried from areas that are not contaminated with manufactured chemicals, or with process residues, as a result of industrial, commercial mining or agricultural activities; That does not contain sulfidic ores or other waste; and Includes excavated natural material that meets such criteria for virgin excavated natural material as may be approved from time to time by a notice published in the NSW Government Gazette.

5.2 Groundwater

Groundwater data were compared to relevant Tier 1 screening criteria in accordance with NEPM (2013), following an assessment of environmental values in accordance with the Guidelines for the Assessment and Management of Groundwater Contamination (2007)¹⁵. Environmental values for this investigation include human-health risks in non-use scenarios. Aquatic ecosystems are also being considered for completeness.

5.2.1 Human Health

- HSLs for a 'commercial/industrial' exposure scenario (HSL-D). HSLs were calculated based on the soil type and the observed depth to groundwater;
- However, the NEPM (2013) HSLs were not applicable for MW701 as the groundwater was recorded at depths shallower than 2m. On this basis, JKE has undertaken a site-specific assessment (SSA) for MW701 only for the Tier 1 screening of human health risks posed by volatile contaminants in groundwater. The assessment included selection of alternative Tier 1 criteria that were considered suitably protective of human health. These criteria are based on drinking water guidelines and have been referred to as HSL-SSA. The criteria were based on the following (as shown in the attached report tables):

¹⁵ NSW Department of Environment and Conservation, (2007). *Guidelines for the Assessment and Management of Groundwater Contamination*.

¹⁴ NSW EPA, (2014). Waste Classification Guidelines, Part 1: Classifying Waste. (referred to as Waste Classification Guidelines 2014)

- Australian Drinking Water Guidelines 2011 (updated 2021)¹⁶ for BTEX compounds and selected VOCs:
- World Health Organisation (WHO) document titled Petroleum Products in Drinking-water,
 Background document for the development of WHO Guidelines for Drinking Water Quality
 (2008)¹⁷ for petroleum hydrocarbons;
- o USEPA Region 9 screening levels for naphthalene (threshold value for tap water); and
- The use of the laboratory PQLs for other contaminants where there were no Australian guidelines.

5.2.2 Environment (Ecological - aquatic ecosystems)

Groundwater Investigation Levels (GILs) for 95% protection of freshwater species were adopted based on the Default Guideline Values in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2018)¹⁸. The 99% trigger values were adopted where required to account for bioaccumulation. Low and moderate reliability trigger values were also adopted for some contaminants where high-reliability trigger values don't exist.

¹⁸ Australian and New Zealand Governments (ANZG), (2018). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia (referred to as ANZG 2018)

¹⁶ National Health and Medical Research Council (NHMRC), (2021). *National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011* (referred to as ADWG 2011)

¹⁷ World Health Organisation (WHO), (2008). *Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality* (referred to as WHO 2008)

6 RESULTS

6.1 Summary of Data (QA/QC) Evaluation

The data evaluation is presented in the appendices. In summary, JKE is of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

6.2 Subsurface Conditions

A summary of the subsurface conditions encountered during the investigation is presented in the following table. Reference should be made to the borehole logs attached in the appendices for further details.

Table 6-1: Summary of Subsurface Conditions

Profile	Description
Pavement	Concrete slab/pavement was encountered at the surface in BH701, BH702, BH704 and BH705 to depths of between approximately 0.06mBGL to 0.17mBGL.
Fill	Fill was encountered at the surface or beneath the pavement in all boreholes and extended to depths of approximately 0.3mBGL to 1.5mBGL. The fill depths are shown on Figure 2.
	The fill typically comprised silty clay, silty gravelly clay and sandy gravelly clay with inclusions of ash, slag, brick and concrete fragments).
	Staining or odours were not encountered during drilling.
Natural Soil	Natural silty clay soil was encountered beneath the fill in all boreholes and extended to depths of between approximately 0.3mBGL and 2.0mBGL.
Bedrock	Weathered claystone bedrock was encountered in BH701 and BH705 at depths of between 0.33mBGL and 1.85mBGL. The claystone extended to the termination depth of the boreholes where it was encountered.
Groundwater	Groundwater seepage was not encountered in the boreholes during drilling. All boreholes remained dry on completion of drilling and a short time after.

6.3 Field Screening

A summary of the field screening results is presented in the following table:

Table 6-2: Summary of Field Screening

Aspect	Details
PID Screening of Soil	PID soil sample headspace readings are presented in attached report tables and the COC
Samples for VOCs	documents attached in the appendices. All results were 0ppm isobutylene equivalents which indicates a lack of PID detectable VOCs.
	William indicates a lack of PID detectable VOCs.
Bulk Screening for	The bulk field screening results are summarised in the attached report tables. All screening
Asbestos	results were below the SAC. Visible asbestos/FCF/ACM was not identified in the bulk samples.
Groundwater Depth	Groundwater seepage was not encountered in the boreholes during drilling and remained
& Flow	dry during and a short time after completion of drilling.

Aspect	Details
	SWLs measured in the monitoring wells installed at the site ranged from 2.91mBGL to 5.92mBGL.
	The groundwater wells were not surveyed, therefore groundwater RLs were not calculated on these measurements. However, based on the contour plot created as part of a previous investigation at the hospital by JKE, groundwater flow is considered to be generally towards the north-east.
Groundwater Field	Field measurements recorded during sampling were as follows:
Parameters	- pH ranged from 6.36 to 6.55;
	- EC ranged from 12,813μS/cm to 22,684μS/cm;
	- Eh ranged from 57.2mV to 89.6mV; and
	- DO ranged from 0.3ppm to 3.4ppm.
	VOC concentrations in the monitoring well headspace were 0ppm at the time of sampling.
LNAPLs petroleum hydrocarbons	Phase separated product (i.e. LNAPL) were not detected using the interphase probe during groundwater sampling.

6.4 Soil Laboratory Results

The soil laboratory results were assessed against the SAC presented in Section 5.1. Individual SAC are shown in the report tables attached in the appendices. A summary of the results is presented below:

6.4.1 Human Health and Environmental (Ecological) Assessment

Table 6-3: Summary of Soil Laboratory Results – Human Health and Environmental (Ecological)

Analyte	N	Max. (mg/kg)	N> Human Health SAC	N> Ecological SAC	Comments
Arsenic	11	7	0	0	-
Cadmium	11	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
Chromium (total)	11	25	0	0	-
Copper	11	34	0	0	-
Lead	11	16	0	0	-
Mercury	11	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
Nickel	11	38	0	0	-
Zinc	11	54	0	0	-
Total PAHs	11	2.3	0	NSL	-
Benzo(a)pyrene	11	0.2	NSL	0	-

Analyte	N	Max.	N> Human	N> Ecological	Comments
		(mg/kg)	Health SAC	SAC	
Carcinogenic PAHs (as BaP TEQ)	11	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
Naphthalene	11	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
DDT+DDE+DDD	11	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
DDT	11	<pql< td=""><td>NSL</td><td>0</td><td>-</td></pql<>	NSL	0	-
Aldrin and dieldrin	11	6	0	NSL	-
Chlordane	11	1.8	0	NSL	-
Heptachlor	11	0.9	0	NSL	-
Chlorpyrifos (OPP)	11	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
PCBs	11	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
TRH F1	11	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
TRH F2	11	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
TRH F3	11	130	0	0	-
TRH F4	11	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Benzene	11	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Toluene	11	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Ethylbenzene	11	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Xylenes	11	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Asbestos (in soil) ACM >7mm	7	<0.01 % w/w	0	-	-
AF/FA		AF/FA 0.001% w/w	0		
Notes:	<u> </u>	1		1	

Notes:

N: Total number (primary samples)

NSL: No set limit NL: Not limiting

6.4.2 Waste Classification Assessment

The laboratory results were assessed against the criteria presented in Section 5.1.4. The results are presented in the report tables attached in the appendices. A summary of the results is presented in the following table:

Table 6-4: Summary of Soil Laboratory Results Compared to CT and SCC Criteria

Analyte	N	N > CT Criteria	N > SCC Criteria	Comments
Arsenic	11	0	0	-
Cadmium	11	0	0	-
Chromium	11	0	0	-
Copper	11	NSL	NSL	-
Lead	11	0	0	-
Mercury	11	0	0	-
Nickel	11	0	0	-
Zinc	11	NSL	NSL	-
TRH (C ₆ -C ₉)	11	0	0	-
TRH (C ₁₀ -C ₃₆)	11	0	0	-
BTEX	11	0	0	-
Total PAHs	11	0	0	-
Benzo(a)pyrene	11	0	0	-
OCPs & OPPs	11	0	0	-
PCBs	11	0	0	-
Asbestos	7	-	-	Asbestos was not detected in the samples analysed.

N: Total number (primary samples)

NSL: No set limit

6.5 Groundwater Laboratory Results

The soil laboratory results were assessed against the SAC presented in Section 0. Individual SAC are shown in the report tables attached in the appendices. A summary of the results is presented below:

Table 6-5: Summary of Groundwater Laboratory Results – Human Health and Environmental (Ecological)

Analyte	N ^	Max. (μg/L)	N> Human Health SAC	N> Ecological SAC	Comments
Arsenic	3	2	0	0	-
Cadmium	3	0.3	0	0	Cadmium exceeded the ecological SAC in WDUP602 which was the interlaboratory duplicate of sample MW603.
Chromium (total)	3	5	0	1	One elevated concentration of chromium above the ecological criterion was encountered in MW603, with a maximum concentration of 5µg/L.
Copper	3	3	0	1	One elevated concentration of copper above the ecological criterion was encountered in MW603, with a maximum concentration of 3µg/L.
Lead	3	2	0	0	-
Mercury	3	0.07	0	1	One elevated concentration of mercury above the ecological criterion was encountered in MW603, with a maximum concentration of 0.07µg/L.
Nickel	3	43	0	2	Two elevated concentrations of nickel above the ecological criterion were encountered in MW601 and MW603, with a maximum concentration of 43µg/L identified in the intra-laboratory duplicate (WDUP601) of sample MW601.
Zinc	3	41	0	2	Two elevated concentrations of zinc above the ecological criterion were encountered in MW601 and MW603, with a maximum concentration of 41µg/L identified in the inter-laboratory duplicate (WDUP602) of sample MW603.
Total PAHs	3	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Benzo(a)pyrene	3	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Naphthalene	3	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
TRH F1	3	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-

Analyte	N ^	Max. (μg/L)	N> Human Health SAC	N> Ecological SAC	Comments
TRH F2	3	110	0	NSL	-
TRH F3	3	100	NSL	NSL	-
TRH F4	3	<pql< td=""><td>NSL</td><td>NSL</td><td>-</td></pql<>	NSL	NSL	-
Benzene	3	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Toluene	3	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Ethylbenzene	3	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
m+p-Xylene	3	<pql< td=""><td>NSL</td><td>0</td><td>-</td></pql<>	NSL	0	-
o-Xylene	3	<pql< td=""><td>NSL</td><td>0</td><td>-</td></pql<>	NSL	0	-
Total Xylenes	3	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
Other VOCs	3	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
рН	3	7	0	0	-
EC	3	27,000	NSL	NSL	-

Notes:

^: Primary samples N: Total number NSL: No set limit NL: Not limiting

7 WASTE CLASSIFICATION ASSESSMENT

7.1 Waste Classification of Fill

Based on the results of the waste classification assessment, and at the time of reporting, the fill material is assigned a preliminary classification of **General Solid Waste (non-putrescible)**. We note that due to the detection of several scheduled pesticides (OCPs) in sample BH705 (0.14-0.2m), the fill at this location is classified as 'solid scheduled chemical waste' by definition under the *Scheduled Chemical Wastes Chemical Control Order 2004*. Condition 30 of the chemical control order states that solid scheduled chemical waste must be disposed of to a landfill lawfully permitted to receive such waste. On this basis, we recommend that the client/contractor obtain confirmation in writing from the receiving landfill facility that they are approved by the EPA to receive such waste, prior to any excavation/disposal of waste from the site. Reference must be made to the chemical control order for further information.

JKE note that ACM in the form of bonded FCF was identified on the ground surface in the sub-floor of the Nepean 2 building. This material was believed to be a localised issue, and appears to be confined to the ground surface in this area. The ACM/FCF is not considered to be associated with imported fill material or sub-surface soil profiles and therefore, it is not considered to impact the overall waste classification of the fill provided that any remaining fragments are removed and that a clearance certificate is provided prior to the commencement of any excavation works.

7.2 Classification of Natural Soil and Bedrock

Based on the scope of work undertaken for this PSI, and at the time of reporting, JKE is of the opinion that the natural soil and bedrock at the site may meet the definition of **VENM** for off-site disposal or re-use purposes. Further assessment via sampling and/or inspection is required following the removal of the overlying fill (where applicable) to confirm this classification prior to off-site disposal of the waste.

7.3 General Information

Waste must be disposed of to a facility licensed to accept the waste. It is the responsibility of the receiving facility to ensure that the waste material meets their licence conditions. JKE accepts no liability whatsoever for illegal or inappropriate disposal of material.

Section 143 of the POEO Act 1997 states that if waste is transported to a place that cannot lawfully be used as a waste facility for that waste, then the transporter and owner of the waste are each guilty of an offence. The transporter and owner of the waste have a duty to ensure that the waste is disposed of in an appropriate manner. JKE accepts no liability whatsoever for the unlawful disposal of any waste from any site.

8 DISCUSSION

8.1 Tier 1 Risk Assessment and Review of CSM

For a contaminant to represent a risk to a receptor, the following three conditions must be present:

- 1. Source The presence of a contaminant;
- 2. Pathway A mechanism or action by which a receptor can become exposed to the contaminant; and
- 3. Receptor The human or ecological entity which may be adversely impacted following exposure to contamination.

If one of the above components is missing, the potential for adverse risks is relatively low.

8.1.1 Soil/Fill

Asbestos in the form of bonded FCF (i.e. ACM) was identified on the surface of the site within the sub-floor of the Nepean 2 building (see sample S8 on Figure 3) as part of the Hazardous Building Materials Survey.

There is potentially a complete SPR linkage to asbestos in soil in this area given the area is unpaved and the ACM was at the ground surface. However, we note that access to the sub-floor area is restricted for maintenance/service personnel. On this basis, the potential for airborne asbestos fibres to be generated and for exposure to airborne asbestos to occur under the current site conditions is considered to be relatively low. The FCF/ ACM is not considered to be associated with imported fill material.

Asbestos was not identified in any of the bulk field quantification samples or in any of the soil samples analysed at the laboratory.

All remaining (i.e. other than asbestos) CoPC concentrations were below the SAC, indicating that there was no source of contamination associated with these CoPC and no complete SPR linkages.

8.1.2 Groundwater

8.1.2.1 Heavy metals

Elevated concentrations of heavy metals including cadmium, chromium, copper, nickel and zinc above the ecological SAC were encountered in the groundwater sampled from groundwater wells MW601 and MW603. The concentrations were consistent with the heavy metal concentrations encountered during groundwater sampling events undertaken for the previous investigations at the wider hospital campus. Therefore, JKE consider the elevated results are likely to be indicative of regional groundwater background concentrations rather than on on-site contamination source. On this basis, and considering there is no nearby surface water receptor, these heavy metals in groundwater are considered to represent a low risk to ecological receptors.

One elevated concentration of mercury above the ecological SAC was detected in the groundwater sample from MW603. The source of this elevation is unknown, however considering the concentration was only marginally above the SAC and the lack of any potential sources of mercury identified on site or in the surrounds, JKE is of the opinion that this elevation is anomalous and does not represent an on-site contamination issue. Furthermore, in consideration of the depth to groundwater (3.68mBGL) and the lack of

exposure scenarios to any on-site or off-site ecological receptors, JKE consider there is no complete SPR linkage and therefore the potential risk to ecological receptors from mercury is low.

All remaining CoPC concentrations for TRH/BTEX, VOCs and PAHs were below the SAC, indicating that there was no source of contamination associated with these CoPC and no complete SPR linkages.

8.2 Decision Statements

The decision statements are addressed below:

Are any results above the SAC?

Yes, as noted in Section 8.1.

Do potential risks associated with contamination exist, and if so, what are they?

Risks were assessed to be low based on the DSI data.

Is remediation required?

Based on the results of this DSI and in the context of the proposed development, there are no triggers for remediation.

Is the site suitable for the proposed development, or can the site be made suitable subject to further characterisation and/or remediation?

JKE is of the opinion that the site can be made suitable for the proposed development, via appropriate implementation of the recommendations.

8.3 Data Gaps

An assessment of data gaps is provided in the following table:

Table 8-1: Data Gap Assessment

Data Gap	Assessment
Groundwater flow direction not confirmed	Based on the site history and the results reported, the potential for groundwater contamination to pose a risk to the receptors is considered to be low. Additional work to address this data gap is not recommended.
Spatial data gaps with soil sampling	Due to site access constraints, minor spatial data gaps exist in the context of the soil sampling. Recommendations have been made to address this data gap (i.e. development and implementation of an unexpected finds protocol).

9 CONCLUSIONS AND RECOMMENDATIONS

The DSI included sampling from seven borehole locations and groundwater sampling from three groundwater wells installed for the investigation. No elevations of the CoPC above the human-health or ecological based SAC were encountered in the soil samples analysed. Elevations of heavy metals in groundwater were identified above the ecological SAC, however these were considered to be consistent with regional/background groundwater conditions. Soil and groundwater contamination triggering a need for remediation was not identified.

Bonded ACM was previously identified (during the PSI) on the ground surface within the sub-floor of the existing Nepean 2 building in the eastern area of the site. The asbestos-related risks in the context of the current land use were assessed to be low due to the most likely form of the asbestos being ACM (i.e. non-friable) and access to the exposed area currently being restricted (sub-floor). Notwithstanding, any remaining ACM fragments will need to be removed prior to the commencement of construction so that potential risks are adequately mitigated.

Based on the Tier 1 risk assessment, contamination related risks in the context of the current land use and the proposed development were assessed to be low. JKE is of the opinion that the site can be made suitable for the proposed development subject to appropriate implementation of the following recommendations:

- The buildings/structures are to be appropriately demolished and clearance certificates are to be
 provided following removal of any hazardous building materials. All demolition and clearances should
 occur prior to removal of the hardstand in order to reduce the potential for cross contamination with
 the underlying soils;
- Following completion of the demolition works, undertake an 'emu pick' of the site for fragments of FCF/ACM at the surface of the site. The pick should be conducted by a suitably licensed asbestos contractor. On completion of the pick, a clearance certificate should be issued by a competent person or SafeWork NSW Licensed Asbestos Assessor to ensure the area is free of visible asbestos; and
- Development and implementation of an unexpected finds protocol during the proposed development works.

JKE is of the opinion that there is currently no requirement to report the contamination to the NSW EPA under the NSW EPA Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997 (2015)¹⁹. JKE consider that the report objectives outlined in Section 1.2 have been addressed.

¹⁹ NSW EPA, (2015). *Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997* (referred to as Duty to Report Contamination)

10 LIMITATIONS

The report limitations are outlined below:

- JKE accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the JKE proposal; and terms of contract between JKE and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, JKE has not undertaken any verification process, except where specifically stated in the report;
- JKE has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- JKE accept no responsibility for potentially asbestos containing materials that may exist at the site.
 These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- JKE have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or landuse. JKE should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.

Important Information About This Report

These notes have been prepared by JKE to assist with the assessment and interpretation of this report.

The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the JKE proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

JKE will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the investigation. If the subject site is sold, ownership of the investigation report should be transferred by JKE to the new site owners who will be informed of the conditions and limitations under which the investigation was undertaken. No person should apply an investigation for any purpose other than that originally intended without first conferring with the consultant.

Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an investigation report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

This Report is based on Professional Interpretations of Factual Data

Site investigations identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an investigation indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

Investigation Limitations

Although information provided by a site investigation can reduce exposure to the risk of the presence of contamination, no environmental site investigation can eliminate the risk. Even a rigorous professional investigation may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.

Misinterpretation of Site Investigations by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an investigation report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

Logs Should not be Separated from the Investigation Report

Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the investigation. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the investigation. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.

To reduce the likelihood of borehole and test pit log misinterpretation, the complete investigation should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.

Read Responsibility Clauses Closely

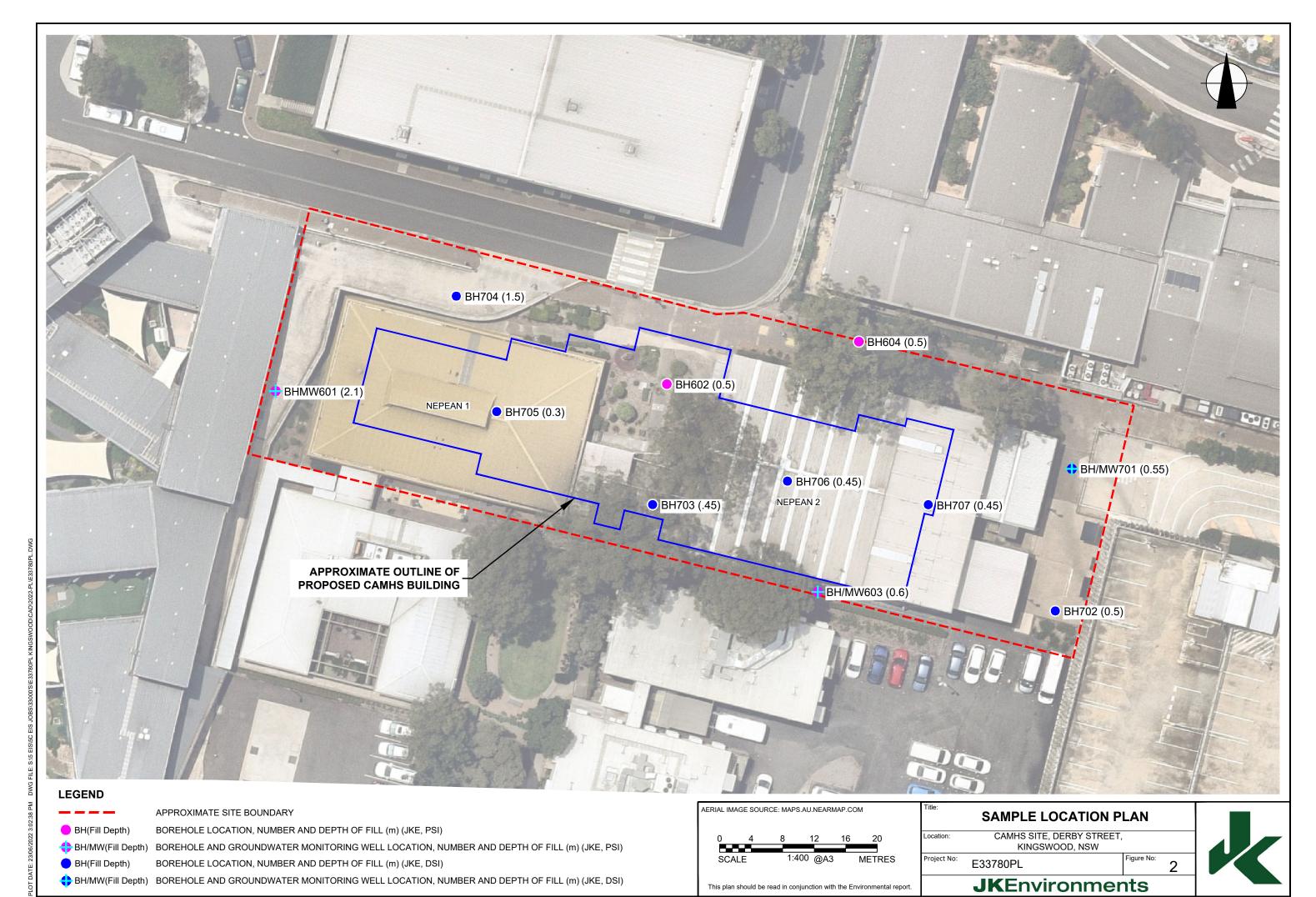
Because an environmental site investigation is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site investigation, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.

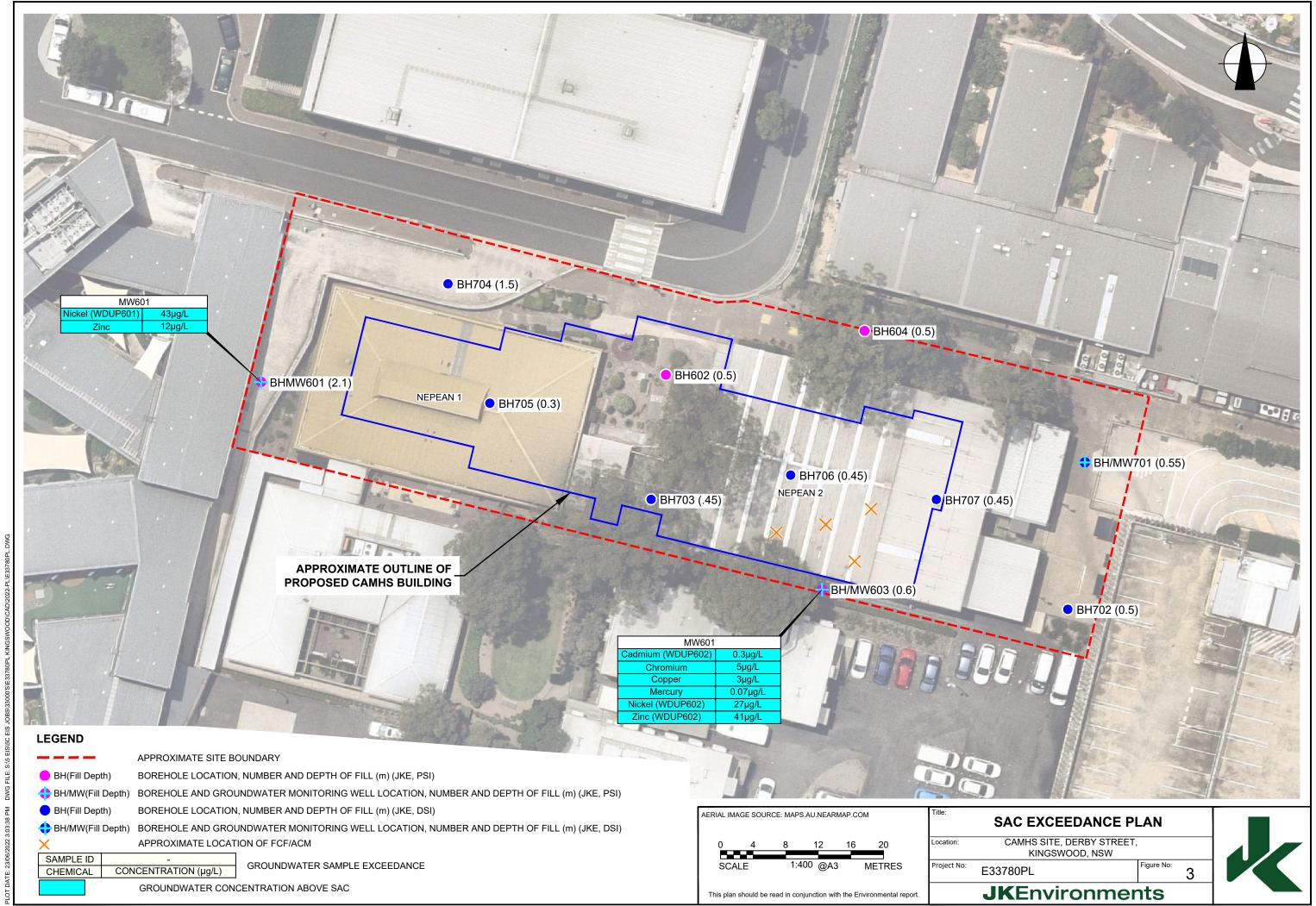
Appendix A: Report Figures

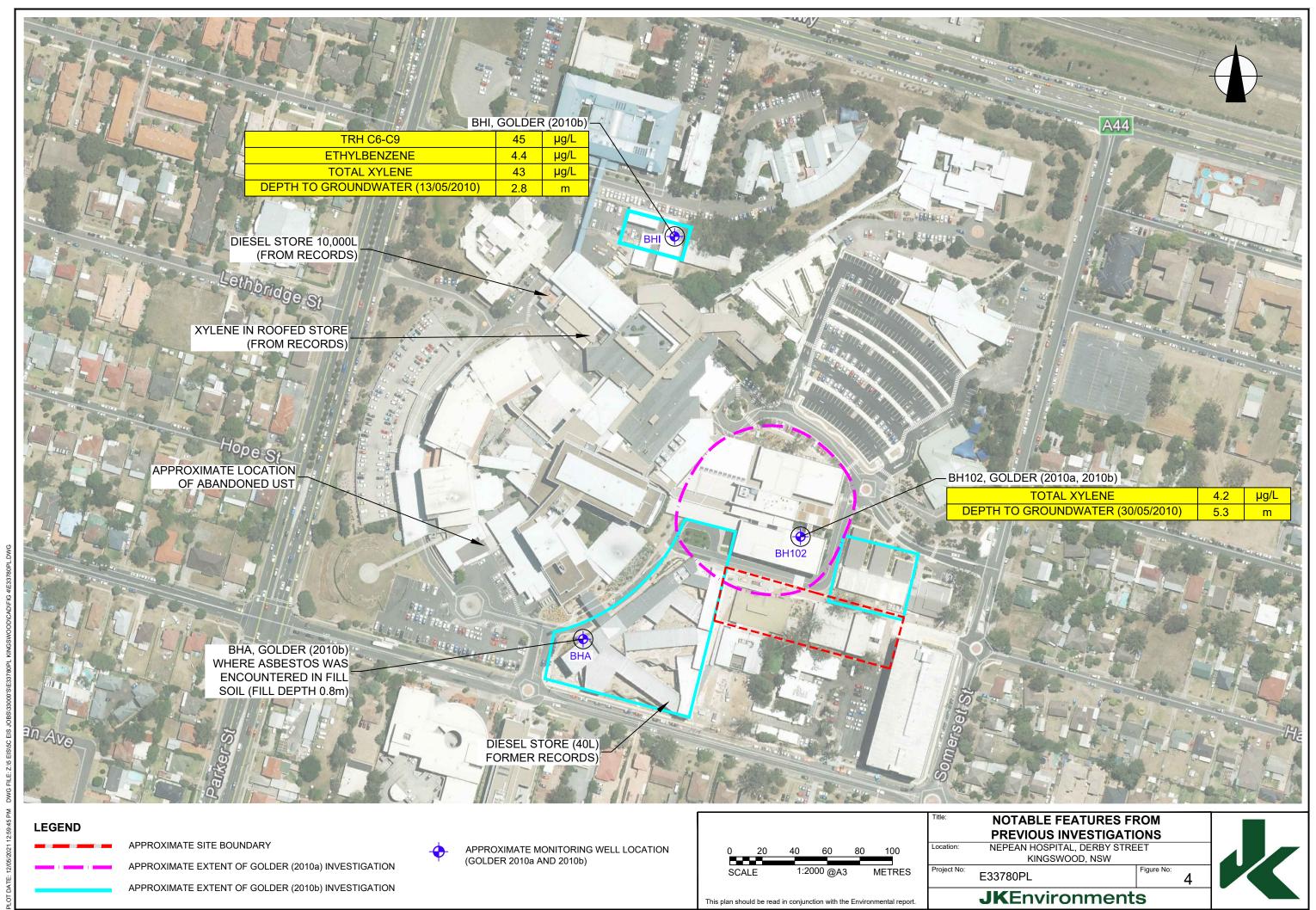
AERIAL IMAGE SOURCE: MAPS.AU.NEARMAP.COM

This plan should be read in conjunction with the Environmental report.

SITE LOCATION PLAN


Location: CAMHS SITE, DERBY STREET, KINGSWOOD, NSW


Project No: E33780PL


Figure No:

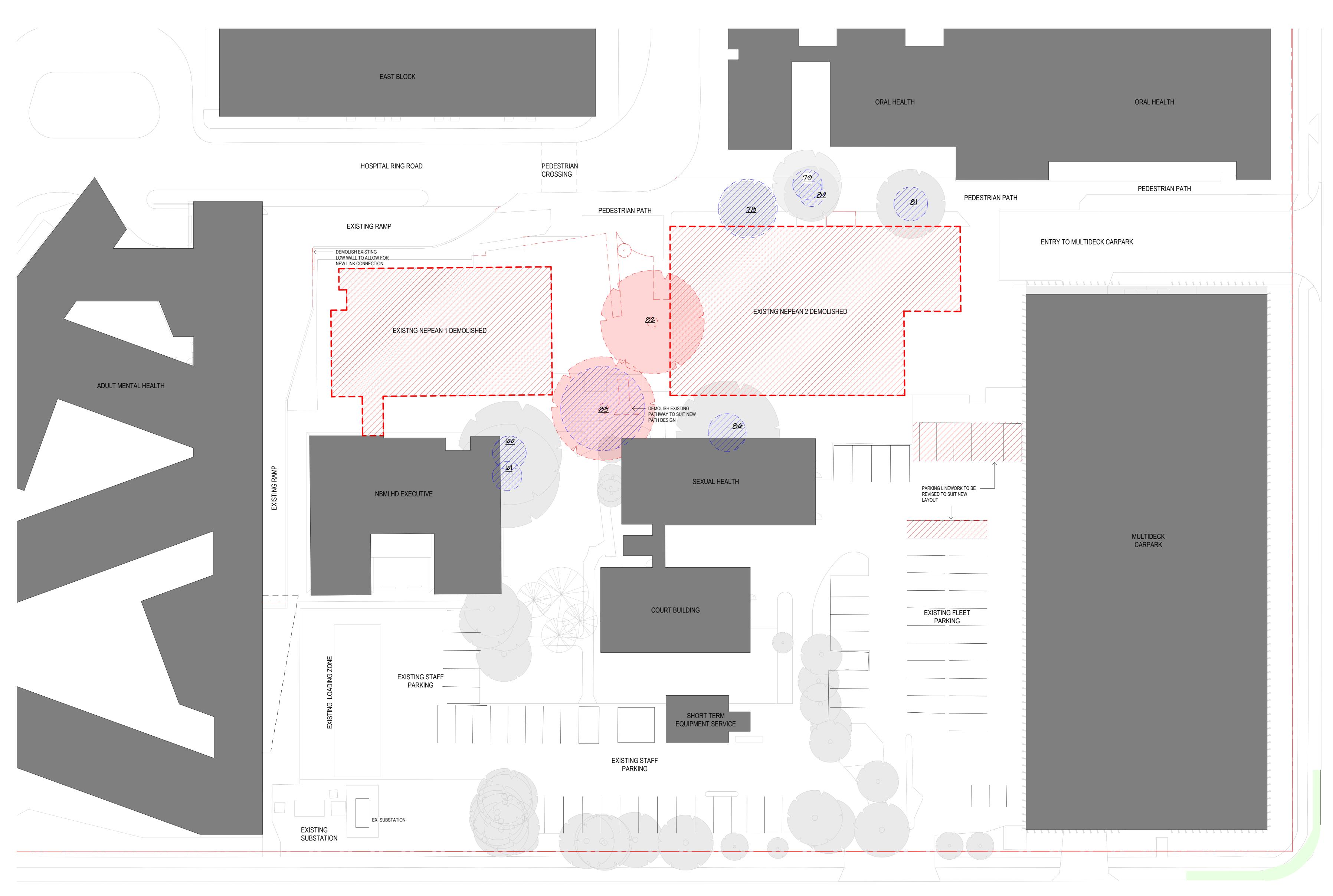
Appendix B: Site Information and Site History

Proposed Development Plans

Derby Street, Kingswood, NSW, 2747

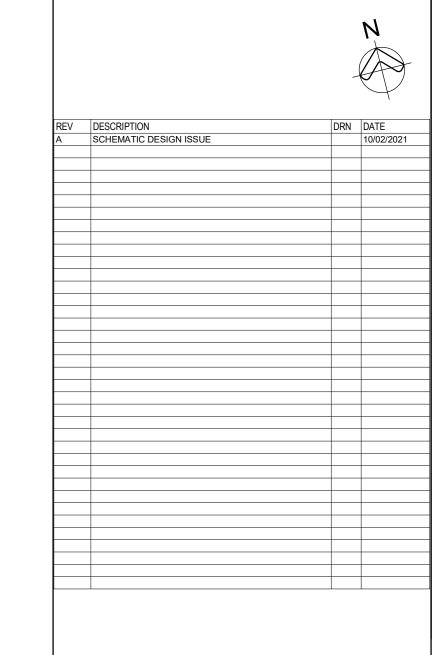
EXISTING & DEMOLITION

PROJECT No DRAWING No REVISION


NHR-STH-DRW-ARC-MHS-A02-001 B

1:200@A0 19/01/20 EC

PLAN


KEY PLAN

DERBY STREET

COPYRIGHT

ALL RIGHTS RESERVED. THIS WORK IS COPYRIGHT AND CANNOT BE REPRODUCED OR COPIED IN ANY FORM OR BY ANY MEANS (GRAPHIC, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPYING) WITHOUT THE WRITTEN PERMISSION OF THE PRINCIPAL UNDER THE TERMS OF THE CONTRACT. ANY LICENCE, EXPRESS OR IMPLIED, TO USE THE DOCUMENT FOR ANY PURPOSE WHATSOEVER IS RESTRICTED TO THE TERMS OF THE AGREEMENT OR IMPLIED AGREEMENT WITH THE PRINCIPAL UNDER THE TERMS OF THE CONTRACT.

DIMENSIONS

USE FIGURED DIMENSIONS, DO NOT SCALE. CONTRACTORS MUST VERIFY ALL DIMENSIONS ON THE SITE BEFORE COMMENCING ANY WORK OR MAKING ANY SHOP DRAWING WHICH MUST RE SUBMITTED.

WORK OR MAKING ANY SHOP DRAWING WHICH MUST BE SUBMITTED AND REVIEWED BEFORE MANUFACTURE.

FIXTURES, FITTINGS & EQUIPMENT SPECIFICATIONS

SUBSTITUTE FF&E EQUIPMENT SPECIFICATIONS

THE FIT-OUT DESIGN AND DOCUMENTATION HAS BEEN COMPLETED ON THE BASIS OF FF&E AND EQUIPMENT ADVISED TO THIS OFFICE AT THE TIME OF BRIEFING THE DESIGN. THE DESIGN PROVISIONS FOR FF&E AND EQUIPMENT INCORPORATES SPATIAL ALLOCATIONS, SERVICING, LOADING AND ACCESS CLEARANCES AND WHERE

ALLOCATIONS, SERVICING, LOADING AND ACCESS CLEARANCES AND WHERE
APPROPRIATE SERVICES REQUIREMENTS, HAVING DUE REGARD FOR SURROUNDING
FIXTURES AND FITTINGS. IT SHOULD BE NOTED THAT SUBSTITUTE FF&E OR EQUIPMENT
WITH ALTERNATE SPECIFICATIONS SHOULD NOT BE PROCURED PRIOR TO VALIDATING
THOSE SPECIFICATIONS AGAINST THE ITEM CONTROL SCHEDULE AND DESIGN
PROVISIONS IN THE MODEL. THIS OFFICE ACCEPTS NO RESPONSIBILITY FOR THE
PROCUREMENT OF SUBSTITUTE FF&E AND EQUIPMENT WHICH HAS NOT BEEN
REVIEWED AND VALIDATED AGAINST THE ORIGINAL DESIGN PROVISIONS.

SERVICE POINTS DISCLAIMER

THE SERVICE POINTS IDENTIFIED ON THESE DRAWINGS HAVE BEEN OVERLAYED FROM
THE BUILDING SERVICES ENGINEERING MODEL, AND ARE PROVIDED FOR INFORMATION
AND SET-OUT PURPOSES ONLY. WE HAVE BEEN ADVISED BY THE SERVICES ENGINEERS
THAT THE POINTS REPRESENTED ON THESE DRAWINGS ARE CORRECT AT THE TIME OF

ISSUED FOR INFORMATION

PUBLICATION. THIS OFFICE DOES NOT WARRANT THE ACCURACY OF THIS DATA. REFER TO THE BUILDING SERVICES ENGINEERING DOCUMENTATION FOR THE INSTALLATION OF THE SERVICES POINTS, AND THE INTERFACE BETWEEN THE SERVICES POINTS AND THE RESPECTIVE ENGINEERING SYSTEMS.

21-31 GOODWOOD ST, RICHMOND VIC 3121, AUSTRALIA
PH: (03) 9885 2333 FAX: (03) 9885 2455

THIS ARCHITECTURAL DESIGN IS THE COPYRIGHT OF
SILVER THOMAS HANLEY (AUS) PTY LTD ABN 21 134 476 065

AND SHALL NOT BE REPRODUCED WITHOUT THEIR WRITTEN PERMISSION

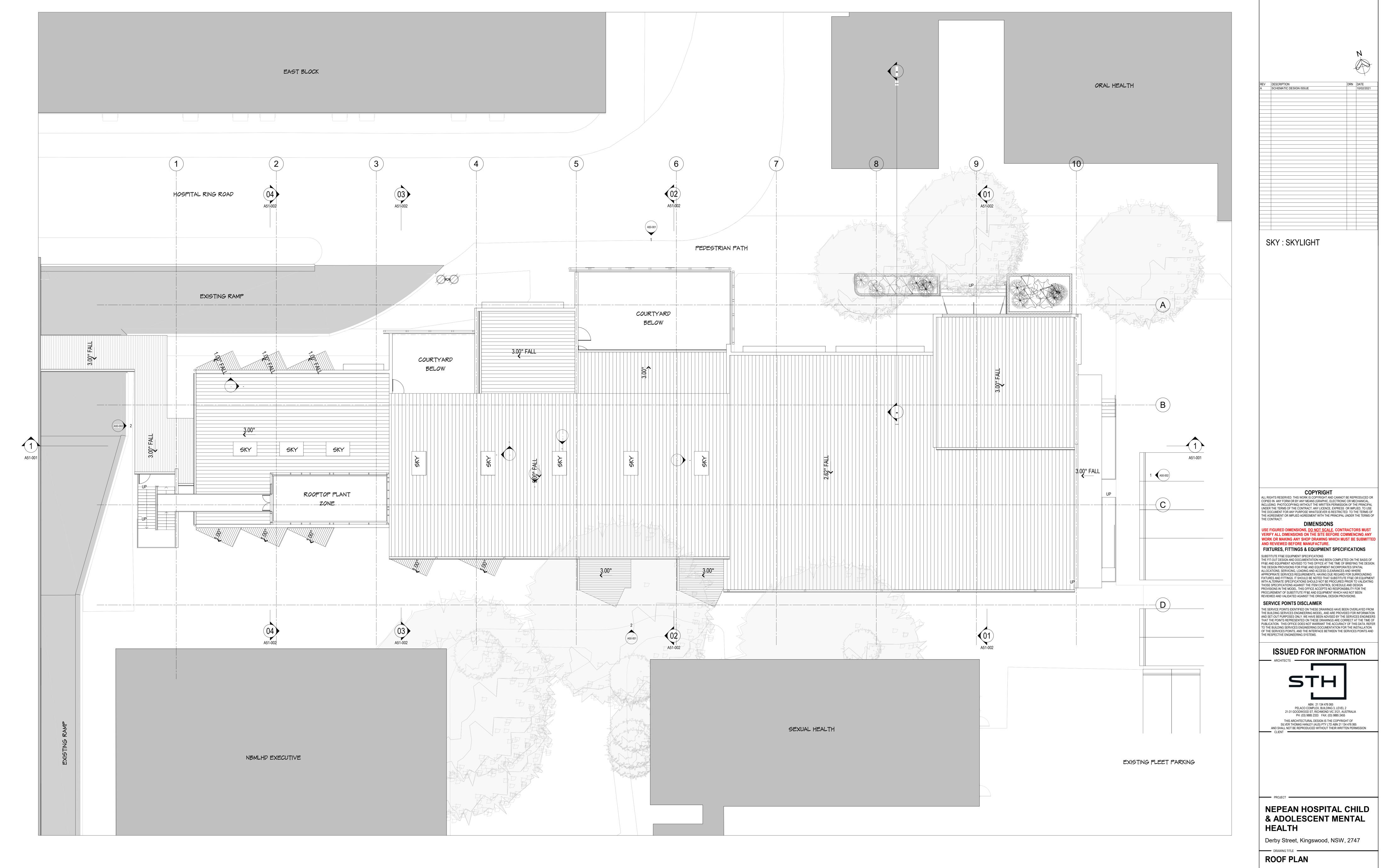
CLIENT

NEPEAN HOSPITAL CHILD & ADOLESCENT MENTAL HEALTH


Derby Street, Kingswood, NSW, 2747

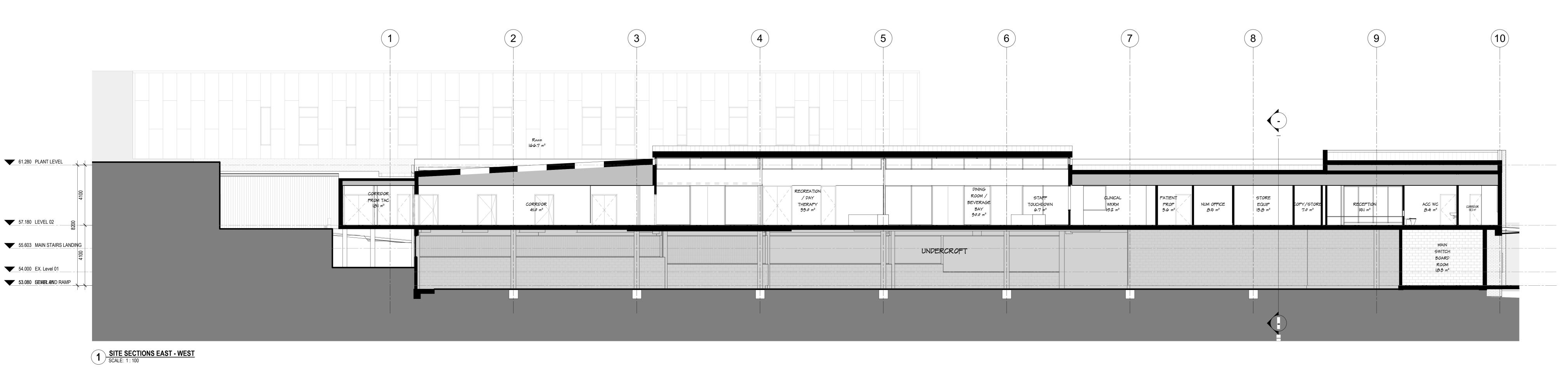
PROPOSED SITE PLAN

As 19/01/21 EC EM indicated@A0


— PROJECT No — DRAWING No — REVISION

10442 NHR-STH-DRW-ARC-MHS-A10-001 A

EXISTING TREE NUMBERS AND LOCATIONS ARE INDICATIVE LOCATIONS TBC


NHR-STH-DRW-ARC-MHS-A20-101 A

EXISTING TREE NUMBERS AND LOCATIONS ARE INDICATIVE LOCATION TBC

PROJECT No — DRAWING No — REVISION NHR-STH-DRW-ARC-MHS-A20-301 A

KEY PLAN -

COPYRIGHT

THIS WORK IS COPYRIGHT AND O

ALL RIGHTS RESERVED. THIS WORK IS COPYRIGHT AND CANNOT BE REPRODUCED OR COPIED IN ANY FORM OR BY ANY MEANS (GRAPHIC, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPYING) WITHOUT THE WRITTEN PERMISSION OF THE PRINCIPAL UNDER THE TERMS OF THE CONTRACT. ANY LICENCE, EXPRESS OR IMPLIED, TO USE THE DOCUMENT FOR ANY PURPOSE WHATSOEVER IS RESTRICTED TO THE TERMS OF THE AGREEMENT OR IMPLIED AGREEMENT WITH THE PRINCIPAL UNDER THE TERMS OF THE CONTRACT.

DIMENSIONS

USE FIGURED DIMENSIONS, <u>DO NOT SCALE</u>. CONTRACTORS MUST VERIFY ALL DIMENSIONS ON THE SITE BEFORE COMMENCING ANY WORK OR MAKING ANY SHOP DRAWING WHICH MUST BE SUBMITTED AND REVIEWED BEFORE MANUFACTURE.

FIXTURES FITTINGS & FOLIDMENT SPECIFICATIONS

AND REVIEWED BEFORE MANUFACTURE.
FIXTURES, FITTINGS & EQUIPMENT SPECIFICATIONS
SUBSTITUTE FF&E EQUIPMENT SPECIFICATIONS
THE FIT-OUT DESIGN AND DOCUMENTATION HAS BEEN COMPLETED ON THE BASIS OF

SUBSTITUTE FF&E EQUIPMENT SPECIFICATIONS
THE FIT-OUT DESIGN AND DOCUMENTATION HAS BEEN COMPLETED ON THE BASIS OF
FF&E AND EQUIPMENT ADVISED TO THIS OFFICE AT THE TIME OF BRIEFING THE DESIGN.
THE DESIGN PROVISIONS FOR FF&E AND EQUIPMENT INCORPORATES SPATIAL
ALLOCATIONS, SERVICING, LOADING AND ACCESS CLEARANCES AND WHERE
APPROPRIATE SERVICES REQUIREMENTS, HAVING DUE REGARD FOR SURROUNDING
FIXTURES AND FITTINGS. IT SHOULD BE NOTED THAT SUBSTITUTE FF&E OR EQUIPMENT
WITH ALTERNATE SPECIFICATIONS SHOULD NOT BE PROCURED PRIOR TO VALIDATING
THOSE SPECIFICATIONS AGAINST THE ITEM CONTROL SCHEDULE AND DESIGN
PROVISIONS IN THE MODEL. THIS OFFICE ACCEPTS NO RESPONSIBILITY FOR THE
PROCUREMENT OF SUBSTITUTE FF&E AND EQUIPMENT WHICH HAS NOT BEEN
REVIEWED AND VALIDATED AGAINST THE ORIGINAL DESIGN PROVISIONS.

SERVICE POINTS DISCLAIMER

THE SERVICE POINTS IDENTIFIED ON THESE DRAWIN
THE BUILDING SERVICES ENGINEERING MODEL, AND

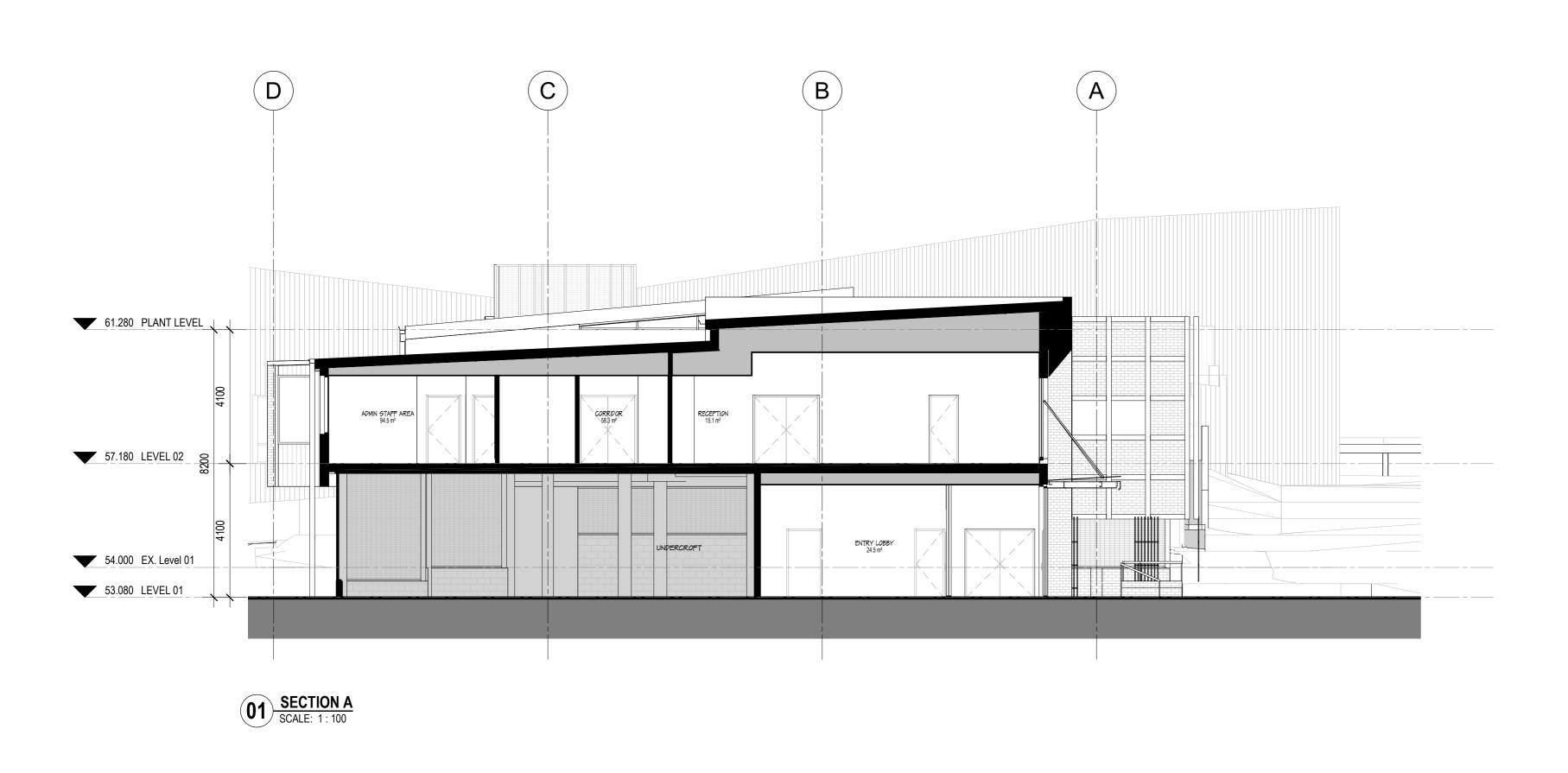
THE SERVICE POINTS IDENTIFIED ON THESE DRAWINGS HAVE BEEN OVERLAYED FROM THE BUILDING SERVICES ENGINEERING MODEL, AND ARE PROVIDED FOR INFORMATION AND SET-OUT PURPOSES ONLY. WE HAVE BEEN ADVISED BY THE SERVICES ENGINEERS THAT THE POINTS REPRESENTED ON THESE DRAWINGS ARE CORRECT AT THE TIME OF PUBLICATION. THIS OFFICE DOES NOT WARRANT THE ACCURACY OF THIS DATA. REFER TO THE BUILDING SERVICES ENGINEERING DOCUMENTATION FOR THE INSTALLATION OF THE SERVICES POINTS, AND THE INTERFACE BETWEEN THE SERVICES POINTS AND THE RESPECTIVE ENGINEERING SYSTEMS.

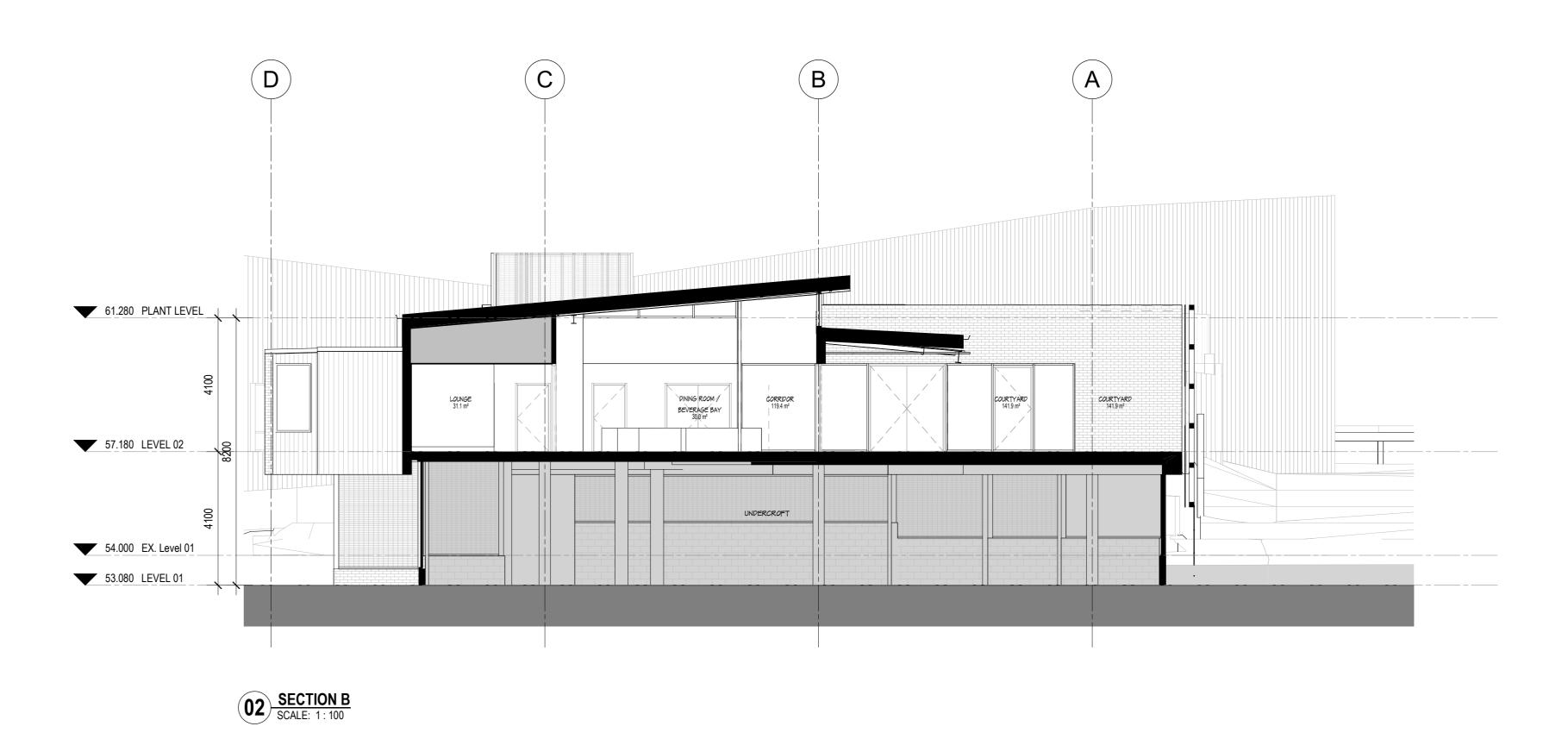
ISSUED FOR INFORMATION

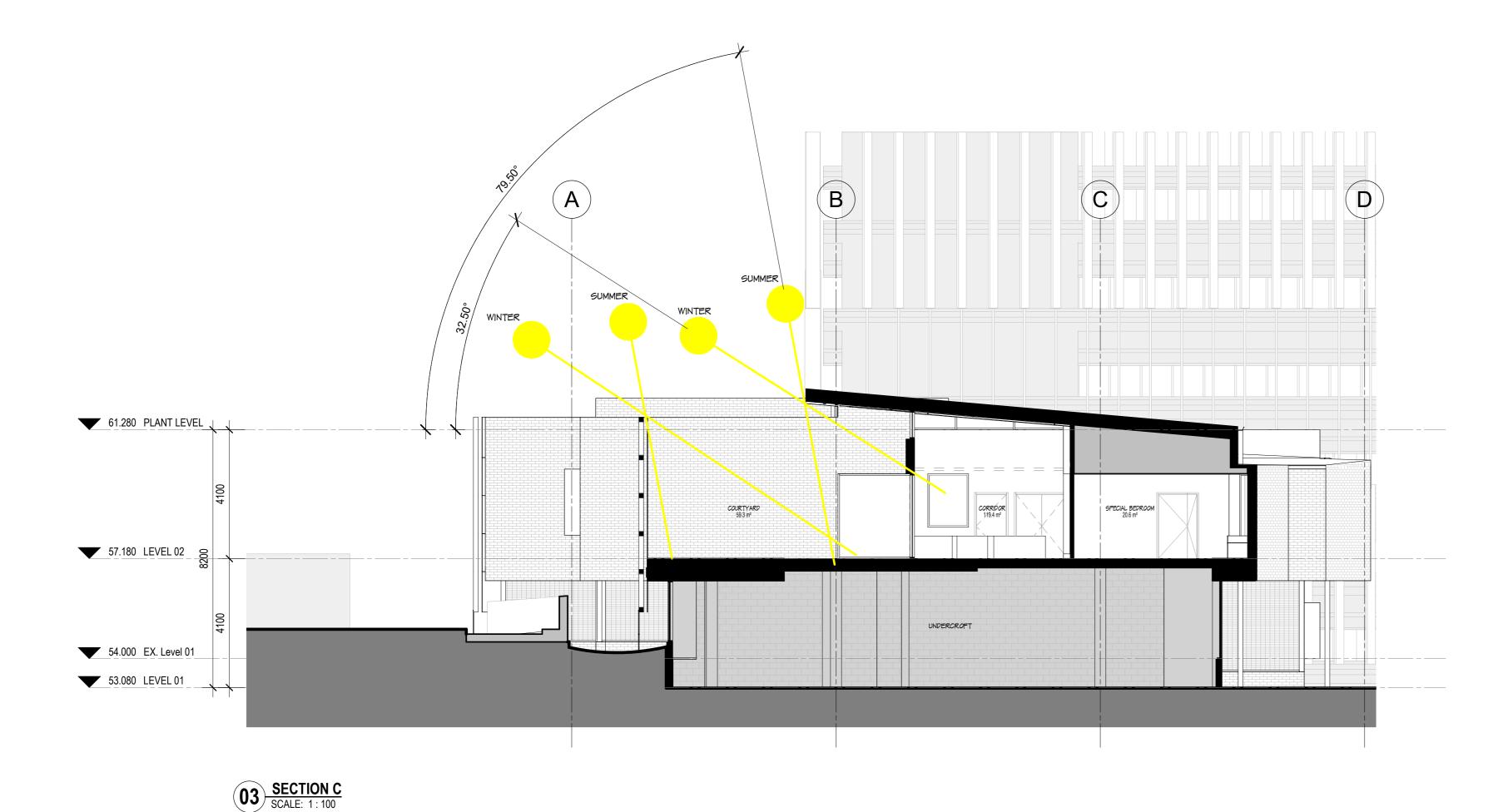
— ARCHITECTS

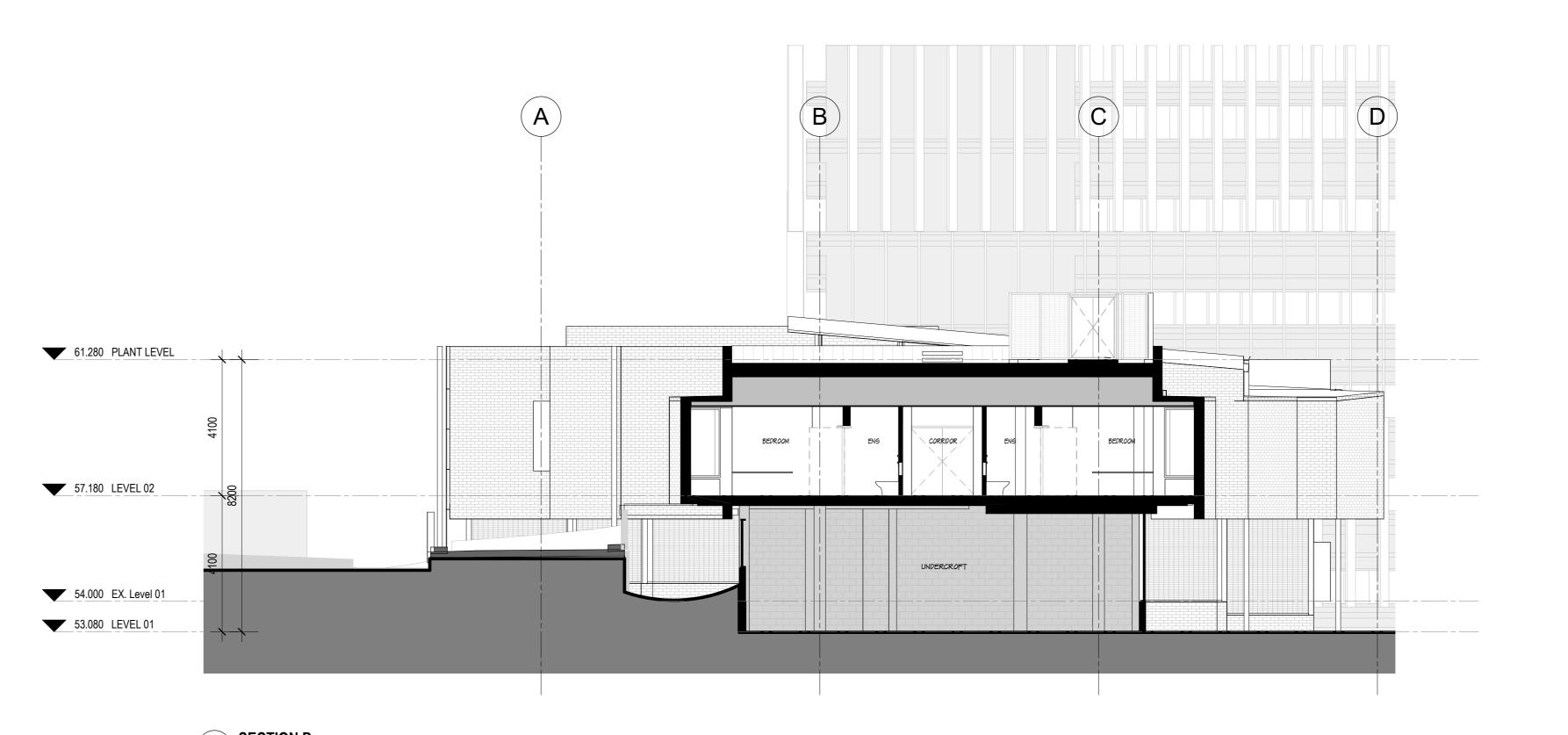
NEPEAN HOSPITAL CHILD & ADOLESCENT MENTAL HEALTH

Derby Street, Kingswood, NSW, 2747


SECTIONS


— SCALE — DATE — DRAWN BY — CHECKED —


1:100@A0 19/01/21 CJ EM


— PROJECT No — DRAWING No — REVISION —

NHR-STH-DRW-ARC-MHS-A51-001 A

KEY PLAN

EV DESCRIPTION SCHEMATIC DESIGN ISSUE

COPYRIGHT

ALL RIGHTS RESERVED. THIS WORK IS COPYRIGHT AND CANNOT BE REPRODUCED OR COPIED IN ANY FORM OR BY ANY MEANS (GRAPHIC, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPYING) WITHOUT THE WRITTEN PERMISSION OF THE PRINCIPAL UNDER THE TERMS OF THE CONTRACT. ANY LICENCE, EXPRESS OR IMPLIED, TO USE THE DOCUMENT FOR ANY PURPOSE WHATSOEVER IS RESTRICTED TO THE TERMS OF THE AGREEMENT OR IMPLIED AGREEMENT WITH THE PRINCIPAL UNDER THE TERMS OF THE CONTRACT.

USE FIGURED DIMENSIONS, <u>DO NOT SCALE</u>. CONTRACTORS MUST VERIFY ALL DIMENSIONS ON THE SITE BEFORE COMMENCING ANY WORK OR MAKING ANY SHOP DRAWING WHICH MUST BE SUBMITTED

VERIFY ALL DIMENSIONS ON THE SITE BEFORE COMMENCING ANY WORK OR MAKING ANY SHOP DRAWING WHICH MUST BE SUBMITTED AND REVIEWED BEFORE MANUFACTURE.

FIXTURES, FITTINGS & EQUIPMENT SPECIFICATIONS

SUBSTITUTE FF&E EQUIPMENT SPECIFICATIONS
THE FIT-OUT DESIGN AND DOCUMENTATION HAS BEEN COMPLETED ON THE BASIS OF FF&E AND EQUIPMENT ADVISED TO THIS OFFICE AT THE TIME OF BRIEFING THE DESIGN. THE DESIGN PROVISIONS FOR FF&E AND EQUIPMENT INCORPORATES SPATIAL ALLOCATIONS, SERVICING, LOADING AND ACCESS CLEARANCES AND WHERE APPROPRIATE SERVICES REQUIREMENTS, HAVING DUE REGARD FOR SURROUNDING FIXTURES AND FITTINGS. IT SHOULD BE NOTED THAT SUBSTITUTE FF&E OR EQUIPMENT WITH ALTERNATE SPECIFICATIONS SHOULD NOT BE PROCURED PRIOR TO VALIDATING THOSE SPECIFICATIONS AGAINST THE ITEM CONTROL SCHEDULE AND DESIGN PROVISIONS IN THE MODEL. THIS OFFICE ACCEPTS NO RESPONSIBILITY FOR THE PROCUREMENT OF SUBSTITUTE FF&E AND EQUIPMENT WHICH HAS NOT BEEN

PROCUREMENT OF SUBSTITUTE FF&E AND EQUIPMENT WHICH HAS NOT BEEN REVIEWED AND VALIDATED AGAINST THE ORIGINAL DESIGN PROVISIONS.

SERVICE POINTS DISCLAIMER

THE SERVICE POINTS IDENTIFIED ON THESE DRAWINGS HAVE BEEN OVERLAYED THE BUILDING SERVICES ENGINEERING MODEL, AND ARE PROVIDED FOR INFORMAND SET OUT DI IDENCES ONLY WE HAVE BEEN ADVISED BY THE SERVICES ENGINEERING MODEL.

THE SERVICE POINTS IDENTIFIED ON THESE DRAWINGS HAVE BEEN OVERLAYED FROM THE BUILDING SERVICES ENGINEERING MODEL, AND ARE PROVIDED FOR INFORMATION AND SET-OUT PURPOSES ONLY. WE HAVE BEEN ADVISED BY THE SERVICES ENGINEERS THAT THE POINTS REPRESENTED ON THESE DRAWINGS ARE CORRECT AT THE TIME OF PUBLICATION. THIS OFFICE DOES NOT WARRANT THE ACCURACY OF THIS DATA. REFER TO THE BUILDING SERVICES ENGINEERING DOCUMENTATION FOR THE INSTALLATION OF THE SERVICES POINTS, AND THE INTERFACE BETWEEN THE SERVICES POINTS AND THE RESPECTIVE ENGINEERING SYSTEMS.

ISSUED FOR INFORMATION

ARCHITECTS

NEPEAN HOSPITAL CHILD & ADOLESCENT MENTAL HEALTH

Derby Street, Kingswood, NSW, 2747

SECTIONS

 SCALE
 DATE
 DRAWN BY
 CHECKED

 1:100@A0
 19/01/21
 EC
 EM

 PROJECT No
 DRAWING No
 REVISION

NHR-STH-DRW-ARC-MHS-A51-002 A

Appendix C: Laboratory Results Summary Tables

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

ABC: Ambient Background Concentration PCBs: Polychlorinated Biphenyls

ACM: PCE: Perchloroethylene (Tetrachloroethylene or Teterachloroethene) **Asbestos Containing Material**

pH_{KCL}: pH of filtered 1:20, 1M KCL extract, shaken overnight ADWG: Australian Drinking Water Guidelines

AF: Asbestos Fines pH of filtered 1:20 1M KCl after peroxide digestion

ANZG Practical Quantitation Limit Australian and New Zealand Guidelines POL:

B(a)P: Benzo(a)pyrene RS: Rinsate Sample

CEC: Cation Exchange Capacity RSL: **Regional Screening Levels** CRC: RSW: **Restricted Solid Waste** Cooperative Research Centre CT: Contaminant Threshold SAC: Site Assessment Criteria

SCC: Specific Contaminant Concentration EILs: **Ecological Investigation Levels**

ESLs: **Ecological Screening Levels** Chromium reducible sulfur S_{cr}: FA: Peroxide oxidisable Sulfur Fibrous Asbestos S_{POS}: Site Specific Assessment GIL: **Groundwater Investigation Levels** SSA:

GSW: SSHSLs: Site Specific Health Screening Levels General Solid Waste

Total Actual Acidity in 1M KCL extract titrated to pH6.5 HILs: **Health Investigation Levels** TAA:

HSLs: **Health Screening Levels** TB: Trip Blank

HSL-SSA: Health Screening Level-SiteSpecific Assessment TCA: 1,1,1 Trichloroethane (methyl chloroform)

kg/L kilograms per litre TCE: Trichloroethylene (Trichloroethene) NA: Not Analysed TCLP: **Toxicity Characteristics Leaching Procedure**

NC: Not Calculated TPA: Total Potential Acidity, 1M KCL peroxide digest NEPM: National Environmental Protection Measure TS: Trip Spike

NHMRC: National Health and Medical Research Council TRH: **Total Recoverable Hydrocarbons Not Limiting** TSA: Total Sulfide Acidity (TPA-TAA) NL:

NSL: No Set Limit UCL: Upper Level Confidence Limit on Mean Value OCP: **Organochlorine Pesticides USEPA** United States Environmental Protection Agency

OPP: Organophosphorus Pesticides **VOCC:** Volatile Organic Chlorinated Compounds

PAHs: Polycyclic Aromatic Hydrocarbons WHO: World Health Organisation weight per weight %w/w:

Table Specific Explanations:

Parts per million

ppm:

HIL Tables:

- The chromium results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.
- Carcinogenic PAHs is a toxicity weighted sum of analyte concentrations for a specific list of PAH compounds relative to B(a)P. It is also refered to as the B(a)P Toxic Equivalence Quotient (TEQ).
- Statistical calculations are undertaken using ProUCL (USEPA). Statistical calculation is usually undertaken using data from fill samples.

EIL/ESL Table:

ABC Values for selected metals have been adopted from the published background concentrations presented in Olszowy et. al., (1995), Trace Element Concentrations in Soils from Rural and Urban New South Wales (the 25th percentile values for old suburbs with low traffic have been quoted).

Waste Classification Table:

- Data assessed using the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014).
- The assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion.
- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde.

QA/QC Table:

- Field blank, Inter and Intra laboratory duplicate results are reported in mg/kg.
- Trip spike results are reported as percentage recovery.
- Field rinsate results are reported in µg/L.

TABLE S1

SOIL LABORATORY RESULTS COMPARED TO NEPM 2013.

HIL-D: 'Commercial/Industrial'

						HEAVY N	/IETALS					PAHs			ORGANOCHL	ORINE PESTI	CIDES (OCPs)			OP PESTICIDES (OPPs)		
All data in mg/kg unless st	tated otherwise		Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Total	Carcinogenic	НСВ	Endosulfan	Methoxychlor	Aldrin &	Chlordane	DDT, DDD	Heptachlor	Chlorpyrifos	TOTAL PCBs	ASBESTOS FIBRES
			Arsenic	Caumum	Cironnani	Сорреі	Leau	Wiercury	Nickei	ZIIIC	PAHs	PAHs				Dieldrin		& DDE				
PQL - Envirolab Services			4	0.4	1	1	1	0.1	1	1	-	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	100
Site Assessment Criteria (S	SAC)		3000	900	3600	240000	1500	730	6000	400000	4000	40	80	2000	2500	45	530	3600	50	2000	7	Detected/Not Detected
Sample Reference	Sample Depth	Sample Description																				
BH701	0.14-0.55	Fill: Silty gravelly clay	7	<0.4	8	26	7	<0.1	13	45	0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH701 - [LAB_DUP]	0.14-0.55	Fill: Silty gravelly clay	7	<0.4	9	32	8	<0.1	15	41	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH701	0.55-0.9	Silty clay	<4	<0.4	9	13	5	<0.1	4	18	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH702	0.06-0.3	Fill: Silty clay	4	<0.4	11	19	11	<0.1	6	19	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH703	0.0-0.2	Fill: Clayey silt	<4	<0.4	11	25	14	<0.1	9	50	0.2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH703	0.2-0.5	Fill: Silty clay	4	<0.4	12	28	12	<0.1	11	44	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH704	0.17-0.4	Fill: Silty gravelly clay	5	<0.4	13	34	13	<0.1	11	45	0.57	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH704	1.5-1.7	Silty clay	6	<0.4	9	18	5	<0.1	7	31	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH705	0.14-0.2	Fill: Sandy gravelly clay	<4	<0.4	25	13	4	<0.1	37	23	<0.05	<0.5	<0.1	<0.1	<0.1	5.9	1.7	<0.1	0.8	<0.1	<0.1	Not Detected
BH705 - [LAB_DUP]	0.14-0.2	Fill: Sandy gravelly clay	<4	<0.4	24	14	4	<0.1	38	28	<0.05	<0.5	<0.1	<0.1	<0.1	6	1.8	<0.1	0.9	<0.1	<0.1	NA
вн706	0-0.2	Fill: Silty gravelly clay	5	<0.4	11	22	15	<0.1	9	52	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
вн706	0.45-0.65	Silty clay	<4	<0.4	7	13	6	<0.1	10	25	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ВН707	0-0.2	Fill: Silty clay	6	<0.4	13	20	16	<0.1	8	54	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
SDUP701	-	Fill: Silty gravelly clay	5	<0.4	5	28	4	<0.1	13	32	2.3	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
SDUP702	-	Fill: Silty clay	5	<0.4	13	24	9	<0.1	11	25	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
SDUP702 - [LAB_DUP]	-	Fill: Silty clay	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.1	NA	NA
Total Number of Sample	2S		15	15	15	15	15	15	15	15	15	15	11	11	11	11	11	11	11	12	11	7
Maximum Value	-		7	<pql< td=""><td>25</td><td>34</td><td>16</td><td><pql< td=""><td>38</td><td>54</td><td>2.3</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>6</td><td>1.8</td><td><pql< td=""><td>0.9</td><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	25	34	16	<pql< td=""><td>38</td><td>54</td><td>2.3</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>6</td><td>1.8</td><td><pql< td=""><td>0.9</td><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	38	54	2.3	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>6</td><td>1.8</td><td><pql< td=""><td>0.9</td><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>6</td><td>1.8</td><td><pql< td=""><td>0.9</td><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>6</td><td>1.8</td><td><pql< td=""><td>0.9</td><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>6</td><td>1.8</td><td><pql< td=""><td>0.9</td><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<>	6	1.8	<pql< td=""><td>0.9</td><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<>	0.9	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<>	<pql< td=""><td>Not Detected</td></pql<>	Not Detected

Concentration above the SAC Concentration above the PQL

VALUE Bold

TABLE S2

SOIL LABORATORY RESULTS COMPARED TO HSLs

All data in mg/kg unless stated otherwise

					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Field PID Measurement
PQL - Envirolab	Services				25	50	0.2	0.5	1	1	1	ppm
NEPM 2013 HSL	Land Use Cat	egory					HSL-D: (OMMERCIAL/IND	USTRIAL			
Sample	Sample	Canada Danadatian	Depth	C-11 C-4								
Reference	Depth	Sample Description	Category	Soil Category								
BH701	0.14-0.55	Fill: Silty gravelly clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH701 -	0.14-0.55	Fill: Silty gravelly clay	0m to <1m	Sand								
[LAB_DUP]	0.14-0.55	riii. Siity graveily clay	011110 < 1111	Janu	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH701	0.55-0.9	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH702	0.06-0.3	Fill: Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH703	0.0-0.2	Fill: Clayey silt	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH703	0.2-0.5	Fill: Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH704	0.17-0.4	Fill: Silty gravelly clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH704	1.5-1.7	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH705	0.14-0.2	Fill: Sandy gravelly clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH705 - [LAB_DUP]	0.14-0.2	Fill: Sandy gravelly clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH706	0-0.2	Fill: Silty gravelly clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH706	0.45-0.65	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH707	0-0.2	Fill: Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
SDUP701	-	Fill: Silty gravelly clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
SDUP702	-	Fill: Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
		•	•									
Total Number	of Samples				15	15	15	15	15	15	15	14
Maximum Val	lue				<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""></pql<></td></pql<>	<pql< td=""></pql<>

oncentration above the SAC Concentration above the PQL VALUE Bold

The guideline corresponding to the concentration above the SAC is highlighted in grey in the Site Assessment Criteria Table below

HSL SOIL ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
BH701	0.14-0.55	Fill: Silty gravelly clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH701 - [LAB_DUP]	0.14-0.55	Fill: Silty gravelly clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH701	0.55-0.9	Silty clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH702	0.06-0.3	Fill: Silty clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH703	0.0-0.2	Fill: Clayey silt	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH703	0.2-0.5	Fill: Silty clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH704	0.17-0.4	Fill: Silty gravelly clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH704	1.5-1.7	Silty clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH705	0.14-0.2	Fill: Sandy gravelly clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH705 -		571.6									
[LAB_DUP]	0.14-0.2	Fill: Sandy gravelly clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH706	0-0.2	Fill: Silty gravelly clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH706	0.45-0.65	Silty clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH707	0-0.2	Fill: Silty clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
SDUP701	-	Fill: Silty gravelly clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
SDUP702	7,000,700,700,700		Sand	260	NL	3	NL	NL	230	NL	

TABLE S3 SOIL LABORATORY RESULTS COMPARED TO MANAGEMENT LIMITS All data in mg/kg unless stated otherwise

			C ₆ -C ₁₀ (F1) plus BTEX	>C ₁₀ -C ₁₆ (F2) plus	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)
				napthalene		
PQL - Envirolab			25	50	100	100
NEPM 2013 Lai	nd Use Category			COMMERCIAI	/INDUSTRIAL	
Sample Reference	Sample Depth	Soil Texture				
BH701	0.14-0.55	Coarse	<25	<50	<100	<100
BH701 - [LAB_DUP]	0.14-0.55	Coarse	<25	<50	<100	<100
BH701	0.55-0.9	Coarse	<25	<50	<100	<100
BH702	0.06-0.3	Coarse	<25	<50	<100	<100
BH703	0.0-0.2	Coarse	<25	<50	130	<100
BH703	0.2-0.5	Coarse	<25	<50	<100	<100
BH704	0.17-0.4	Coarse	<25	<50	<100	<100
BH704	1.5-1.7	Coarse	<25	<50	<100	<100
BH705	0.14-0.2	Coarse	<25	<50	<100	<100
BH705 - [LAB_DUP]	0.14-0.2	Coarse	<25	<50	<100	<100
BH706	0-0.2	Coarse	<25	<50	120	<100
BH706	0.45-0.65	Coarse	<25	<50	<100	<100
BH707	0-0.2	Coarse	<25	<50	<100	<100
SDUP701	-	Coarse	<25	<50	<100	<100
SDUP702	-	Coarse	<25	<50	<100	<100
Total Number	of Camples		15	15	15	15
Maximum Vali	•		<pql< td=""><td><pql< td=""><td>130</td><td><pql< td=""></pql<></td></pql<></td></pql<>	<pql< td=""><td>130</td><td><pql< td=""></pql<></td></pql<>	130	<pql< td=""></pql<>

VALUE

Bold

Concentration above the SAC

Concentration above the PQL

Sample Reference	Sample Depth	Soil Texture	C ₆ -C ₁₀ (F1) plus BTEX	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)
BH701	0.14-0.55	Coarse	700	1000	3500	10000
BH701 -	0.14-0.55	Coarse				
[LAB_DUP]	0.14-0.55	Coarse	700	1000	3500	10000
BH701	0.55-0.9	Coarse	700	1000	3500	10000
BH702	0.06-0.3	Coarse	700	1000	3500	10000
BH703	0.0-0.2	Coarse	700	1000	3500	10000
BH703	0.2-0.5	Coarse	700	1000	3500	10000
BH704	0.17-0.4	Coarse	700	1000	3500	10000
BH704	1.5-1.7	Coarse	700	1000	3500	10000
BH705	0.14-0.2	Coarse	700	1000	3500	10000
BH705 -	0.14-0.2	Coarse				
[LAB_DUP]	0.14-0.2	Coarse	700	1000	3500	10000
BH706	0-0.2	Coarse	700	1000	3500	10000
BH706	0.45-0.65	Coarse	700	1000	3500	10000
BH707	0-0.2	Coarse	700	1000	3500	10000
SDUP701	-	Coarse	700	1000	3500	10000
SDUP702	-	Coarse	700	1000	3500	10000

MANAGEMENT LIMIT ASSESSMENT CRITERIA

TABLE S4
SOIL LABORATORY RESULTS COMPARED TO DIRECT CONTACT CRITERIA
All data in mg/kg unless stated otherwise

Analyte		C ₆ -C ₁₀	>C ₁₀ -C ₁₆	>C ₁₆ -C ₃₄	>C ₃₄ -C ₄₀	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PID
PQL - Envirolab Services		25	50	100	100	0.2	0.5	1	1	1	
CRC 2011 -Direct contac	t Criteria	26,000	20,000	27,000	38,000	430	99,000	27,000	81,000	11,000	
Site Use				CC	MMERCIAL/IN	DUSTRIAL - DIRE	CT SOIL CONT	ACT			
Sample Reference	Sample Depth										
BH701	0.14-0.55	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH701 - [LAB_DUP]	0.14-0.55	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH701	0.55-0.9	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH702	0.06-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH703	0.0-0.2	<25	<50	130	<100	<0.2	<0.5	<1	<1	<1	0
BH703	0.2-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH704	0.17-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH704	1.5-1.7	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH705	0.14-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH705 - [LAB_DUP]	0.14-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH706	0-0.2	<25	<50	120	<100	<0.2	<0.5	<1	<1	<1	0
BH706	0.45-0.65	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH707	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
SDUP701	-	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
SDUP702	-	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
Total Number of Sampl	es	15	15	15	15	15	15	15	15	15	14
Maximum Value		<pql< td=""><td><pql< td=""><td>130</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>130</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	130	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""></pql<></td></pql<>	<pql< td=""></pql<>

Concentration above the SAC Concentration above the PQL

VALUE Bold Detailed Site Investigation (DSI) CAMHS, Nepean Hospital, Derby Street, Kingswood, NSW E33780PL

TABLE S5
ASBESTOS QUANTIFICATION - FIELD OBSERVATIONS AND LABORATORY RESULTS
HIL-D:Commercial/Industrial

							ı	FIELD DATA											LABORATORY	/ DATA						
Date Sampled	Sample reference	Sample Depth	Visible ACM in top 100mm) Mass ACM (g)	Mass Asbestos in ACM (g)	[Asbestos from ACM in soil] (%w/w)	Mass ACM <7mm (g)	Mass Asbestos in ACM <7mm (g)	[Asbestos from ACM <7mm in soil] (%w/w)	Mass FA (g)	Mass Asbestos in FA (g)	[Asbestos from FA in soil] (%w/w)	Lab Report Number	Sample refeference	Sample Depth	Sample Mass (g)	Asbestos ID in soil (AS4964) >0.1g/kg	Trace Analysis	Total Asbestos (g/kg)	Asbestos ID in soil <0.1g/kg	>7mm	FA and AF Estimation (g)	ACM >7mm Estimation %(w/w)	FA and AF Estimatio n %(w/w)
SAC			No					0.05			0.001			0.001											0.05	0.001
28/05/2022	BH701	0.14-0.55	No	3	1,700	No ACM observed			No ACM <7mm observed			No FA observed			296694	BH701	0.14-0.55	729.75	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
28/05/2022	BH702	0.06-0.5	No	6	5,100	No ACM observed			No ACM <7mm observed			No FA observed			296694	BH702	0.06-0.3	612.45	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
28/05/2022	BH703	0.0-0.2	No	6	5,700	No ACM observed			No ACM <7mm observed			No FA observed			296694	BH703	0.0-0.2	188.85	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
28/05/2022	BH703	0.2-0.3	No	3	1,400	No ACM observed			No ACM <7mm observed			No FA observed			296694	BH704	0.17-0.4	547.6	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
28/05/2022	BH704	0.17-1.0	No	9	7,400	No ACM observed			No ACM <7mm observed			No FA observed			297282	BH705	0.14-0.2	796.69	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
28/05/2022	BH704	1.0-1.5	No	6	5,800	No ACM observed			No ACM <7mm observed			No FA observed			297282	BH706	0-0.2	736.2	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
4/06/2022	BH705	0.14-0.3	No	3	2,100	No ACM observed			No ACM <7mm observed			No FA observed			297282	BH707	0-0.2	706.92	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
4/06/2022	BH706	0-0.3	No	6	5,600	No ACM observed			No ACM <7mm observed			No FA observed							-							
4/06/2022	BH707	0-0.3	No	6	5,900	No ACM observed			No ACM <7mm observed			No FA observed			-											

Concentration above the SAC VALUE

TABLE S6
SOIL LABORATORY RESULTS COMPARED TO NEPM 2013 EILs AND ESLS

All data in mg/kg unless stated otherwise

Land Use Category												сом	MERCIAL/INDUS	TRIAL									
									AGED HEAVY	METALS-EILs			EI	Ls					ESLs				
				рН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
PQL - Envirolab Services				_	1	-	4	1	1	1	1	1	1	0.1	25	50	100	100	0.2	0.5	1	1	0.05
Ambient Background Cor	ncentration (Al	BC)		-	_	-	NSL	8	18	104	5	77	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample Reference	Sample Depth	Sample Description	Soil Texture																				
BH701	0.14-0.55	Fill: Silty gravelly clay	Coarse	NA	NA	NA	7	8	26	7	13	45	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.07
BH701 - [LAB_DUP]	0.14-0.55	Fill: Silty gravelly clay	Coarse	NA	NA	NA	7	9	32	8	15	41	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH701	0.55-0.9	Silty clay	Coarse	NA	NA	NA	<4	9	13	5	4	18	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH702	0.06-0.3	Fill: Silty clay	Coarse	NA	NA	NA	4	11	19	11	6	19	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH703	0.0-0.2	Fill: Clayey silt	Coarse	NA	NA	NA	<4	11	25	14	9	50	<1	<0.1	<25	<50	130	<100	<0.2	<0.5	<1	<1	<0.05
BH703	0.2-0.5	Fill: Silty clay	Coarse	NA	NA	NA	4	12	28	12	11	44	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH704	0.17-0.4	Fill: Silty gravelly clay	Coarse	NA	NA	NA	5	13	34	13	11	45	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.07
BH704	1.5-1.7	Silty clay	Coarse	NA	NA	NA	6	9	18	5	7	31	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH705	0.14-0.2	Fill: Sandy gravelly clay	Coarse	NA	NA	NA	<4	25	13	4	37	23	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH705 - [LAB_DUP]	0.14-0.2	Fill: Sandy gravelly clay	Coarse	NA	NA	NA	<4	24	14	4	38	28	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH706	0-0.2	Fill: Silty gravelly clay	Coarse	NA	NA	NA	5	11	22	15	9	52	<1	<0.1	<25	<50	120	<100	<0.2	<0.5	<1	<1	<0.05
BH706	0.45-0.65	Silty clay	Coarse	NA	NA	NA	<4	7	13	6	10	25	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH707	0-0.2	Fill: Silty clay	Coarse	NA	NA	NA	6	13	20	16	8	54	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
SDUP701	-	Fill: Silty gravelly clay	Coarse	NA	NA	NA	5	5	28	4	13	32	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.2
SDUP702	-	Fill: Silty clay	Coarse	NA	NA	NA	5	13	24	9	11	25	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
																							1
Total Number of Sample	es .			0	0	0	15	15	15	15	15	15	15	11	15	15	15	15	15	15	15	15	15
Maximum Value				NA	NA	NA	7	25	34	16	38	54	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>130</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.2</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>130</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.2</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>130</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.2</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>130</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.2</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	130	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.2</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.2</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>0.2</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>0.2</td></pql<></td></pql<>	<pql< td=""><td>0.2</td></pql<>	0.2

Concentration above the SAC

Concentration above the PQL

The guideline corresponding to the elevated value is highlighted in grey in the EIL and ESL Assessment Criteria Table below

EIL AND ESL ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Sample Description	Soil Texture	рН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
BH701	0.14-0.55	Fill: Silty gravelly clay	Coarse	NA	NA	NA	160	320	100	1900	60	190	370	640	215	170	1700	3300	75	135	165	180	72
BH701 - [LAB_DUP]	0.14-0.55	Fill: Silty gravelly clay	Coarse	NA	NA	NA	160	320	100	1900	60	190	370	640	215	170	1700	3300	75	135	165	180	72
BH701	0.55-0.9	Silty clay	Coarse	NA	NA	NA	160	320	100	1900	60	190	370	-	215	170	1700	3300	75	135	165	180	72
BH702	0.06-0.3	Fill: Silty clay	Coarse	NA	NA	NA	160	320	100	1900	60	190	370	640	215	170	1700	3300	75	135	165	180	72
BH703	0.0-0.2	Fill: Clayey silt	Coarse	NA	NA	NA	160	320	100	1900	60	190	370	640	215	170	1700	3300	75	135	165	180	72
BH703	0.2-0.5	Fill: Silty clay	Coarse	NA	NA	NA	160	320	100	1900	60	190	370	-	215	170	1700	3300	75	135	165	180	72
BH704	0.17-0.4	Fill: Silty gravelly clay	Coarse	NA	NA	NA	160	320	100	1900	60	190	370	640	215	170	1700	3300	75	135	165	180	72
BH704	1.5-1.7	Silty clay	Coarse	NA	NA	NA	160	320	100	1900	60	190	370	-	215	170	1700	3300	75	135	165	180	72
BH705	0.14-0.2	Fill: Sandy gravelly clay	Coarse	NA	NA	NA	160	320	100	1900	60	190	370	640	215	170	1700	3300	75	135	165	180	72
BH705 - [LAB_DUP]	0.14-0.2	Fill: Sandy gravelly clay	Coarse	NA	NA	NA	160	320	100	1900	60	190	370	640	215	170	1700	3300	75	135	165	180	72
BH706	0-0.2	Fill: Silty gravelly clay	Coarse	NA	NA	NA	160	320	100	1900	60	190	370	640	215	170	1700	3300	75	135	165	180	72
BH706	0.45-0.65	Silty clay	Coarse	NA	NA	NA	160	320	100	1900	60	190	370		215	170	1700	3300	75	135	165	180	72
BH707	0-0.2	Fill: Silty clay	Coarse	NA	NA	NA	160	320	100	1900	60	190	370	640	215	170	1700	3300	75	135	165	180	72
SDUP701	-	Fill: Silty gravelly clay	Coarse	NA	NA	NA	160	320	100	1900	60	190	370	640	215	170	1700	3300	75	135	165	180	72
SDUP702	-	Fill: Silty clay	Coarse	NA	NA	NA	160	320	100	1900	60	190	370	640	215	170	1700	3300	75	135	165	180	72

TABLE S7

SOIL LABORATORY RESULTS COMPARED TO WASTE CLASSIFICATION GUIDELINES

All data in mg/kg unless stated otherwise

						HEAVY	METALS				P/	AHs		OC/OP	PESTICIDES		Total			TRH				BTEX COM	MPOUNDS		1
			A	C- di	Ch				All al al	7:	Total	B(a)P	Total	Chloropyrifos	Total Moderately	Total	PCBs	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	Total	Benzene	Toluene	Ethyl	Total	ASBESTOS FIBRES
			Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	PAHs		Endosulfans		Harmful	Scheduled						C ₁₀ -C ₃₆			benzene	Xylenes	l
PQL - Envirolab Services			4	0.4	1	1	1	0.1	1	1	-	0.05	0.1	0.1	0.1	0.1	0.1	25	50	100	100	50	0.2	0.5	1	1	100
General Solid Waste CT1			100	20	100	NSL	100	4	40	NSL	200	0.8	60	4	250	50	50	650		NSL		10,000	10	288	600	1,000	-
General Solid Waste SCC1			500	100	1900	NSL	1500	50	1050	NSL	200	10	108	7.5	250	50	50	650		NSL		10,000	18	518	1,080	1,800	-
Restricted Solid Waste CT2			400	80	400	NSL	400	16	160	NSL	800	3.2	240	16	1000	50	50	2600		NSL		40,000	40	1,152	2,400	4,000	-
Restricted Solid Waste SCC2	2		2000	400	7600	NSL	6000	200	4200	NSL	800	23	432	30	1000	50	50	2600		NSL		40,000	72	2.073	4,320	7,200	_
Sample Reference	Sample Depth	Sample Description												,								10,000			.,,===	.,	
BH701	0.14-0.55	Fill: Silty gravelly clay	7	<0.4	8	26	7	<0.1	13	45	0.5	0.07	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH701 - [LAB_DUP]	0.14-0.55	Fill: Silty gravelly clay	7	<0.4	9	32	8	<0.1	15	41	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH701	0.55-0.9	Silty clay	<4	<0.4	9	13	5	<0.1	4	18	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH702	0.06-0.3	Fill: Silty clay	4	<0.4	11	19	11	<0.1	6	19	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH703	0.0-0.2	Fill: Clayey silt	<4	<0.4	11	25	14	<0.1	9	50	0.2	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	120	120	<0.2	<0.5	<1	<1	Not Detected
BH703	0.2-0.5	Fill: Silty clay	4	<0.4	12	28	12	<0.1	11	44	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH704	0.17-0.4	Fill: Silty gravelly clay	5	<0.4	13	34	13	<0.1	11	45	0.57	0.07	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH704	1.5-1.7	Silty clay	6	<0.4	9	18	5	<0.1	7	31	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH705	0.14-0.2	Fill: Sandy gravelly clay	<4	<0.4	25	13	4	<0.1	37	23	<0.05	<0.05	<0.1	<0.1	<0.1	8.4	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH705 - [LAB_DUP]	0.14-0.2	Fill: Sandy gravelly clay	<4	<0.4	24	14	4	<0.1	38	28	<0.05	<0.05	<0.1	<0.1	<0.1	8.7	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH706	0-0.2	Fill: Silty gravelly clay	5	<0.4	11	22	15	<0.1	9	52	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	110	110	<0.2	<0.5	<1	<1	Not Detected
BH706	0.45-0.65	Silty clay	<4	<0.4	7	13	6	<0.1	10	25	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH707	0-0.2	Fill: Silty clay	6	<0.4	13	20	16	<0.1	8	54	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
SDUP701	-	Fill: Silty gravelly clay	5	<0.4	5	28	4	<0.1	13	32	2.3	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
SDUP702	-	Fill: Silty clay	5	<0.4	13	24	9	<0.1	11	25	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
SDUP702 - [LAB_DUP]	-	Fill: Silty clay	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.1	<0.1	<0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Number of Samples	i		15	15	15	15	15	15	15	15	15	15	11	12	12	12	11	15	15	15	15	15	15	15	15	15	7
Maximum Value			7	<pql< td=""><td>25</td><td>34</td><td>16</td><td><pql< td=""><td>38</td><td>54</td><td>2.3</td><td>0.2</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>8.7</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>120</td><td>120</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	25	34	16	<pql< td=""><td>38</td><td>54</td><td>2.3</td><td>0.2</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>8.7</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>120</td><td>120</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	38	54	2.3	0.2	<pql< td=""><td><pql< td=""><td><pql< td=""><td>8.7</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>120</td><td>120</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>8.7</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>120</td><td>120</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>8.7</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>120</td><td>120</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	8.7	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>120</td><td>120</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>120</td><td>120</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>120</td><td>120</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>120</td><td>120</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	120	120	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<>	<pql< td=""><td>Not Detected</td></pql<>	Not Detected

Concentration above the CT1 Concentration above SCC1 Concentration above the SCC2 Concentration above PQL

																																																					JAC	TIVILOTIII	ients
TABLE Q: SOIL QA/	l QC SUMMA	ARY																																																					
			TRH C6 - C10	TRH > C10-C16 TRH > C16-C34	TRH >C34-C40	Benzene	Toluene Ethylbenzene	m+p-xylene	o-Xylene	Naphthalene	Acenaphthylene	Acenaph-thene Fluorene	Phenanthrene	Anthracene	Fluoranthene	Benzo(a)anthracene	Chrysene	Benzo(b,j+k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthra-cene	Benzo(g,h,i)perylene	НСВ	alpha- BHC	gamma- BHC beta- BHC	Heptachlor	delta- BHC	Aldrin	Heptachlor Epoxide	Gamma- Chlordane	Endosulfan I	pp- DDE	Dieldrin	Endrin	000-dd	Endosulfan II pp- DDT	Endrin Aldehyde	Endosulfan Sulphate	Methoxychlor	Azinphos-methyl (Guthion) Bromophos-ethyl	Chlorpyriphos	Chlorpyriphos-methyl	Diazinon	Dichlorvos	Dimethoate Ethion	Fenitrothion	Malathion	Parathion	Ronnel	Total PCBS Arsenic	Cadmium	Chromium	Copper	Lead	Mercu y Nicke I	Znc
		rirolab SYD		50 100				2							0.1 0	0.1	0.1	0.2	0.05	0.1 0.1	0.1	0.1	0.1 0.	.1 0.1	0.1	0.1	0.1	0.1 (0.1 0.	1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1 0.:	1 0.1	0.1	0.1	0.1	0.1 0.1	0.1	0.1	0.1	0.1		0.4		1			1
	PQL Envi	rirolab VIC	25	50 100	0 100	0.2	0.5 1.0	2.0	1.0	0.1	0.1 (0.1 0.1	0.1	0.1	0.1 0	0.1	0.1	0.2	0.1 0	0.1	0.1	0.1	0.1 0.	.1 0.1	0.1	0.1	0.1	0.1 (0.1 0.	1 0.1	0.1	0.1	0.1	0.1 0	0.1	0.1	0.1	0.1	0.1 0	1 0.1	0.1	0.1	0.1	0.1 0.1	0.1	0.1	0.1	0.1	0.1 4.0	0.4	1.0	1.0	1.0 0.	1 1.0	1.0
Intra	BH701	0.14-0.55		<50 <10	00 <100	<0.2	<0.5 <1	<2	<1	<0.1 <	<0.1 <	0.1 <0.	.1 0.1	<0.1	0.2 0.	l <0.1	<0.1	<0.2	0.07 <	0.1 <0.	1 <0.1	<0.1	<0.1 <0	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1 <	<0.1 <0	.1 <0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <0.1	<0.1	<0.1	<0.1 <	0.1 <0	.1 <0.1	<0.1	<0.1	<0.1 <	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1 <	0.1 7	7 <0.4	8	26	7 <0.		45
laboratory	SDUP701	-	<25		00 <100	<0.2	<0.5 <1	<2	<1	<0.1 <	<0.1 <	0.1 <0.	.1 0.3	<0.1	0.5 0.	0.2	0.2	0.3	0.2	0.1 <0.	1 0.2	<0.1	<0.1 <0	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1 <	<0.1 <0	.1 <0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <0.1	<0.1	<0.1	<0.1 <	0.1 <0	.1 <0.1	<0.1	<0.1	<0.1 <	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	0.1 5	<0.4	5	28	4 <0	0.1 13	
duplicate	MEAN		nc		nc	nc	nc nc	nc	nc	nc	nc	nc nc	0.2	nc	0.35 0.2	5 0.125	0.125	0.2	0.135 0.	075 nc	0.125	nc	nc n	nc nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc i	nc nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc no	nc	nc	nc	nc	nc 6	5 nc				nc 13	
	RPD %		nc	nc nc	nc	nc	nc nc	nc	nc	nc	nc	nc nc	100%	nc	86% 120	% 120%	120%	100%	96% 6	/% nc	120%	nc	nc n	nc nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc i	nc nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc no	nc	nc	nc	nc	nc 33	nc nc	46%	7% 5	5% n/	nc 0%	34%
Inter	BH702	0.06-0.3	-25	<50 <10	0 <100	<0.2	<0.5 <1	2	-1	c0.1	(0.1	01 <0	1 <0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.2	-0.0E -	0.1 <0.	1 <0.1	<0.1	c0.1 c0	0.1 <0.	1 <0.1	<0.1	<0.1	c0.1	(0.1 (0	1 <01	<0.1	<0.1	<0.1	<0.1 <	01 <01	<0.1	<0.1	<0.1	0.1 <0	1 <01	<0.1	<0.1	<0.1 <	0.1 <0	1 <01	<0.1	<0.1	<0.1	01 4	-01	11	10	11 <	0.1 6	19
laboratory	511702			<50 <10		<0.2	<0.5 <1	<2	<1	<0.1	<0.1 <	0.1 <0.	1 <0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.2	<0.05 <	0.1 <0.		<0.1	<0.1 <0	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	c0.1 <0	1 <0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <0.1	<0.1	<0.1	<0.1	0.1 <0	1 <0.1	<0.1	<0.1	<0.1	0.1 <0.	1 <0.1			<0.1	0.1 5	<0.4	13	24	9 <0		25
duplicate	MEAN			nc nc		nc	nc nc	nc	nc	nc	nc	nc nc	nc	nc	nc no	nc	nc	nc	nc	nc no		nc	nc n	nc nc	nc	nc	nc	nc	nc n	nc nc	nc	nc	nc	nc i	nc nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc no	nc	nc		nc	nc 4.	.5 nc	12	21.5	10 no		22
	RPD %			nc nc		nc	nc nc	nc	nc		nc	nc nc	nc	nc	nc no	nc	nc	nc	nc	nc no	nc	nc	nc n	nc nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc i	nc nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc no	nc	nc	nc	nc		2% nc			20% no	nc 59%	
																																													$\overline{}$		$\overline{}$						$\overline{}$		
Field	TB-S701		<25	<50 <10	00 <100	<0.2	<0.5 <1	<2	<1	<0.1 <	<0.1 <	0.1 <0.	.1 <0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.2	<0.05 <	0.1 <0.	1 <0.1	NA	NA N	IA NA	NA NA	NA	NA	NA I	NA N	A NA	NA	NA	NA	NA I	NA NA	NA	NA	NA	NA N	A NA	NA	NA	NA	NA NA	. NA	NA	NA	NA	NA <4	4 <0.4	3	<1	3 <0).1 <1	1
Blank	28/05/22																																													\perp									
																																														\perp	\rightarrow				\perp				
Field	TB-S1	-	<25	NA NA	A NA	<0.2	<0.5 <1	<2	<1	NA	NA I	NA NA	A NA	NA	NA N	NA NA	NA	NA	NA I	NA NA	NA NA	NA	NA N	IA NA	NA NA	NA	NA	NA	NA N	A NA	NA	NA	NA	NA I	NA NA	NA	NA	NA	NA N	A NA	NA	NA	NA	NA NA	. NA	NA	NA	NA I	NA NA	A NA	NA	NA	NA N	IA NA	NA
Blank	4/06/22				_	-	_	+	+	_	_	_	_	-	_	_	-	_	_	_	_		_	_	-	+	_	-	_	_	+	-	-	_	_	-	-		_	_	+	-	_	_	+-	+-	-	+		-	+-	-	-	+-	+
Trip	TS-S701					101% 1	.02% 1039	4 103%	102%				-			-					-				-						-					-									+-	-	-	_+	_ _		+-				+
Spike	28/05/22				-	101/0 1	.02/0 103/	10370	10270		-	-	-	-		-	-	-	-	-	-			-	-	-		-		-	-	-		-	-	-	-	- +	-	-	-			-	+-	+				+	+			+	+ -
эрікс	LOJOSJEL																																												-	-	-	-		-	-	-	-	-	_
Trip	TS-T1		-		-	97%	98% 99%	96%	97%	-	-		-	-		-	-	-	-		-	-			-	-	-	-		-	-	-	-	-		-	-	-			-	-	-		-	-	- 1	-			-	-			-
Spike	4/06/22																																																						
Field	FR-SPT701		85	<50 <10	00 <100	<1	<1 <1	<2	<1	<1	<1	<1 <1	l <1	<1	<1 <	<1	<1	<2	<1	<1 <1	<1	NA	NA N	IA NA	NA.	NA	NA	NA	NA N	A NA	NA	NA	NA	NA I	NA NA	NA	NA	NA	NA N	A NA	NA	NA	NA	NA NA	. NA	NA	NA	NA I	NA <0.0	J5 <0.01	. <0.01	0.3 <	J.03 <0.0	005 < 0.02	. <0.02
Rinsate	28/05/22																																												\bot	\perp					\perp				
																																														لــــــــــــــــــــــــــــــــــــــ					لــــــــــــــــــــــــــــــــــــــ				\bot
	Result out	tside of QA/QC a	cceptance cr	iteria																																																			

Detailed Site Investigation (DSI) CAMHS, Nepean Hospital, Derby Street, Kingswood, NSW E33780PL

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

Parts per million

ppm:

ADWG: Australian Drinking Water Guidelines PCBs: Polychlorinated Biphenyls

ANZG Australian and New Zealand Guidelines PCE: Perchloroethylene (Tetrachloroethylene or Tetrachloroethene)

B(a)P: Benzo(a)pyrene PQL: **Practical Quantitation Limit**

CRC: Cooperative Research Centre RS: Rinsate Sample

Ecological Screening Levels ESLs: RSL: **Regional Screening Levels** GIL: **Groundwater Investigation Levels** SAC: Site Assessment Criteria HILs: **Health Investigation Levels** SSA: Site Specific Assessment

HSLs: Health Screening Levels **SSHSLs** Site Specific Health Screening Levels

 $\textbf{HSL-SSA:} \ \ \textbf{Health Screening Level-SiteSpecific Assessment}$ TB: Trip Blank Not Analysed NA: TCA:

1,1,1 Trichloroethane (methyl chloroform) NC: Not Calculated TCE: Trichloroethylene (Trichloroethene)

National Environmental Protection Measure NEPM: TS: Trip Spike

NHMRC: National Health and Medical Research Council TRH:

Total Recoverable Hydrocarbons NL: **Not Limiting** UCL: Upper Level Confidence Limit on Mean Value

No Set Limit **USEPA** United States Environmental Protection Agency NSL:

OCP: Organochlorine Pesticides **VOCC:** Volatile Organic Chlorinated Compounds

OPP: Organophosphorus Pesticides WHO: World Health Organisation PAHs: Polycyclic Aromatic Hydrocarbons

TABLE G1
SUMMARY OF GROUNDWATER LABORATORY RESULTS COMPARED TO ECOLOGICAL GILS SAC
All results in µg/L unless stated otherwise.

	PQL Envirolab	ANZG 2018	MW601	MW601 - [LAB DUP]	MW603	MPLES MW701	WDUP601	WDUP602
	Services	Fresh Waters	MINAPOL	WW001 - [LAB DOP]	WWOOS	IVIVV 701	WDOP601	WDOP602
organic Compounds and Parameters								
H		6.5 - 8.5	7	NA	6.8	6.8	NA	NA
lectrical Conductivity (μS/cm) letals and Metalloids	1	NSL	15000	NA	23000	27000	NA	NA
rsenic (As III)	1	24	1	NA	2	<1	2	<1
admium	0.1	0.2	<0.1	NA	0.2	0.2	<0.1	0.3
hromium (SAC for Cr III adopted)	1	3.3	<1	NA	5	<1	<1	<1
Copper	1	1.4	<1	NA	3	<1	<1	2
ead	1	3.4	<1	NA	2	<1	<1	<1
otal Mercury (inorganic)	0.05	0.06	<0.05	<0.05	0.07	<0.05	<0.05	<0.05
lickel	1	11	40	NA	19	2	43	27
inc	1	8	12	NA	26	8	11	41
Monocyclic Aromatic Hydrocarbons (BTEX Co		050	-1	-11	-1	-1	-11	
enzene oluene	1 1	950 180	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
thylbenzene	1	80	<1	<1	<1	<1	<1	<1
n+p-xylene	2	75	<2	<2	<2	<2	<2	<2
-xylene	1	350	<1	<1	<1	<1	<1	<1
otal xylenes	2	NSL	<2	<2	<2	<2	<2	<2
olatile Organic Compounds (VOCs), includin	g chlorinated V	OCs						
ichlorodifluoromethane	10	NSL	<10	<10	<10	<10	<10	<10
hloromethane	10	NSL	<10	<10	<10	<10	<10	<10
inyl Chloride	10	100	<10	<10	<10	<10	<10	<10
romomethane	10	NSL	<10	<10	<10	<10	<10	<10
hloroethane	10	NSL	<10	<10	<10	<10	<10	<10
richlorofluoromethane	10	NSL	<10	<10	<10	<10	<10	<10
1-Dichloroethene	1	700	<1	<1	<1	<1	<1	<1
rans-1,2-dichloroethene	1	NSL	<1	<1	<1	<1	<1	<1
,1-dichloroethane	1	90	<1	<1	<1	<1	<1	<1
is-1,2-dichloroethene	1	NSL	<1	<1	<1	<1	<1	<1
romochloromethane	1	NSL	<1	<1	<1	<1	<1	<1
hloroform	1	370	<1	<1	<1	<1	<1	<1
,2-dichloropropane	1	NSL	<1	<1	<1	<1	<1	<1
,2-dichloroethane	1	1900	<1	<1	<1	<1	<1	<1
,1,1-trichloroethane	1	270	<1	<1	<1	<1	<1	<1
,1-dichloropropene	1	NSL	<1	<1	<1	<1	<1	<1
yclohexane	1	NSL	<1	<1	<1	<1	<1	<1
arbon tetrachloride	1	240	<1	<1	<1	<1	<1	<1
enzene	1	950	<1	<1	<1	<1	<1	<1
ibromomethane	1	NSL	<1	<1	<1	<1	<1	<1
,2-dichloropropane richloroethene	1	900	<1	<1	<1	<1	<1	<1
romodichloromethane	1 1	330 NSL	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
rans-1,3-dichloropropene	1	NSL	<1	<1	<1	<1	<1	<1
is-1,3-dichloropropene	1	NSL	<1	<1	<1	<1	<1	<1
,1,2-trichloroethane	1	6500	<1	<1	<1	<1	<1	<1
oluene	1	180	<1	<1	<1	<1	<1	<1
,3-dichloropropane	1	1100	<1	<1	<1	<1	<1	<1
Dibromochloromethane	1	NSL	<1	<1	<1	<1	<1	<1
,2-dibromoethane	1	NSL	<1	<1	<1	<1	<1	<1
etrachloroethene	1	70	<1	<1	<1	<1	<1	<1
,1,1,2-tetrachloroethane	1	NSL	<1	<1	<1	<1	<1	<1
Chlorobenzene	1	55	<1	<1	<1	<1	<1	<1
thylbenzene	1	80	<1	<1	<1	<1	<1	<1
romoform	1	NSL	<1	<1	<1	<1	<1	<1
n+p-xylene	2	75	<2	<2	<2	<2	<2	<2
tyrene	1	NSL	<1	<1	<1	<1	<1	<1
,1,2,2-tetrachloroethane	1	400	<1	<1	<1	<1	<1	<1
-xylene	1	350	<1	<1	<1	<1	<1	<1
,2,3-trichloropropane	1	NSL	<1	<1	<1	<1	<1	<1
opropylbenzene	1	30	<1	<1	<1	<1	<1	<1
romobenzene	1	NSL	<1	<1	<1	<1	<1	<1
-propyl benzene	1	NSL	<1	<1	<1	<1	<1	<1
-chlorotoluene	1	NSL	<1	<1	<1	<1	<1	<1
-chlorotoluene	1	NSL	<1	<1	<1	<1	<1	<1
,3,5-trimethyl benzene	1	NSL	<1	<1	<1	<1	<1	<1
ert-butyl benzene	1	NSL	<1	<1	<1	<1	<1	<1
,2,4-trimethyl benzene	1	NSL	<1	<1	<1	<1	<1	<1
,3-dichlorobenzene	1	260	<1	<1	<1	<1	<1	<1
ec-butyl benzene	1	NSL	<1	<1	<1	<1	<1	<1
,4-dichlorobenzene	1	60 NGI	<1	<1	<1	<1	<1	<1
-isopropyl toluene	1	NSL 160	<1	<1	<1	<1	<1	<1
,2-dichlorobenzene	1	160 NSI	<1	<1	<1	<1	<1	<1
-butyl benzene	1	NSL NSL	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
,2-dibromo-3-chloropropane ,2,4-trichlorobenzene	1	NSL 85	<1 <1	<1	<1 <1	<1	<1 <1	<1
,2,4-trichlorobenzene lexachlorobutadiene	1	NSL	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1
,2,3-trichlorobenzene	1	NSL 3	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1
olycyclic Aromatic Hydrocarbons (PAHs)	1	3	<1	<1	\1	<1	<1	<1
aphthalene	0.2	16	<0.2	NA	<0.2	<0.2	<0.2	<0.1
cenaphthylene	0.2	NSL	<0.2	NA NA	<0.1	<0.2	<0.2	<0.1
cenaphthene	0.1	NSL	<0.1	NA NA	<0.1	<0.1	<0.1	<0.1
uorene	0.1	NSL	<0.1	NA NA	<0.1	<0.1	<0.1	<0.1
henanthrene	0.1	0.6	<0.1	NA NA	<0.1	<0.1	<0.1	<0.1
nthracene	0.1	0.6	<0.1	NA NA	<0.1	<0.1	<0.1	<0.1
uoranthene	0.1	1	<0.1	NA NA	<0.1	<0.1	<0.1	<0.1
yrene	0.1	NSL	<0.1	NA NA	<0.1	<0.1	<0.1	<0.1
enzo(a)anthracene	0.1	NSL	<0.1	NA NA	<0.1	<0.1	<0.1	<0.1
hrysene	0.1	NSL	<0.1	NA NA	<0.1	<0.1	<0.1	<0.1
enzo(b,j+k)fluoranthene	0.1	NSL	<0.1	NA NA	<0.2	<0.1	<0.1	<0.1
enzo(b,j+k)fluorantnene enzo(a)pyrene	0.2	0.1	<0.2	NA NA	<0.2	<0.2	<0.2	<0.2
ndeno(1,2,3-c,d)pyrene	0.1	NSL	<0.1	NA NA	<0.1	<0.1	<0.1	<0.1
ibenzo(a,h)anthracene	0.1	NSL	<0.1	NA NA	<0.1	<0.1	<0.1	<0.1
		IN.3L	<u.1< td=""><td>INA</td><td></td><td></td><td></td><td>. SU.I</td></u.1<>	INA				. SU.I

Concentration above the SAC

Concentration above the PQL

GIL >PQL

Red

TABLE G2 GROUNDWATER LABORATORY RESULTS COMPARED TO HSLs All data in $\mu g/L$ unless stated otherwise

	•			C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	•
PQL - Envirolab	Services			10	50	1	1	1	2	1	PID
NEPM 2013 - La	nd Use Categ	gory			н	SL-D: COM	MERCIAL/I	NDUSTRIAL			
Sample Reference	Water Depth	Depth Category	Soil Category								
MW601	5.92	2m to <4m	Clay	<10	<50	<1	<1	<1	<2	<1	0
MW601 - [LAB	5.92	2m to <4m	Clay	<10	NA	<1	<1	<1	<2	<1	NA
MW603	3.68	2m to <4m	Clay	<10	110	<1	<1	<1	<2	<1	0
MW701	2.91	0m to <2m	Clay	<10	<50	<1	<1	<1	<2	<1	0
WDUP601	5.92	2m to <4m	Clay	<10	<50	<1	<1	<1	<2	<1	NA
WDUP602	3.68	2m to <4m	Clay	<10	<50	<1	<1	<1	<2	<1	NA
Total Number o	f Samples			6	5	6	6	6	6	6	3
Maximum Value	е			<pql< td=""><td>110</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	110	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>0</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>0</td></pql<></td></pql<>	<pql< td=""><td>0</td></pql<>	0

Concentration above the SAC Site specific assesment (SSA) required

VALUE VALUE

Bold

Concentration above the PQL

The guideline corresponding to the elevated value is highlighted in grey in the Groundwater Assessment Criteria Table below

HSL GROUNDWATER ASSESSMENT CRITERIA

Sample Reference	Water Depth	Depth Category	Soil Category	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
MW601	5.92	2m to <4m	Clay	NL	NL	30000	NL	NL	NL	NL
MW601 - [LAB	5.92	2m to <4m	Clay	NL	NA	30000	NL	NL	NL	NL
MW603	3.68	2m to <4m	Clay	NL	NL	30000	NL	NL	NL	NL
MW701	2.91	0m to <2m	Clay	SSA	SSA	SSA	SSA	SSA	SSA	SSA
WDUP601	5.92	2m to <4m	Clay	NL	NL	30000	NL	NL	NL	NL
WDUP602	3.68	2m to <4m	Clay	NL	NL	30000	NL	NL	NL	NL

TABLE G3 GROUNDWATER LABORATORY RESULTS COMPARED TO SITE SPECIFIC HSLs - RISK ASSESSMENT All results in μ g/L unless stated otherwise.

	PQL	NHMRC	WHO 2008	USEPA RSL	SAMPLES
	Envirolab	ADWG 2011		Tapwater	MW701
	Services			2017	
Total Recoverable Hydrocarbons (TRH)	1	1	4=000		
C ₆ -C ₉ Aliphatics (assessed using F1)	10	-	15000	-	<10
>C ₉ -C ₁₄ Aliphatics (assessed using F2) Monocyclic Aromatic Hydrocarbons (BTEX Co	50	-	100	-	<50
Benzene	1	1	_	-	<1
Toluene	1	800	_	-	<1
Ethylbenzene	1	300	_	-	<1
Total xylenes	2	600	-	-	<2
Polycyclic Aromatic Hydrocarbons (PAHs)	•				
Naphthalene	1	-	-	6.1	<1
Volatile Organic Compounds (VOCs), includin	g chlorinated VC	OCs			
Dichlorodifluoromethane	10	-	-	-	<10
Chloromethane	10	-	-	-	<10
Vinyl Chloride	10	0.3	-	-	<10
Bromomethane	10	-	-	-	<10
Chloroethane	10	-	-	-	<10
Trichlorofluoromethane	10	-	-	-	<10
1,1-Dichloroethene	1	30	-	-	<1
Trans-1,2-dichloroethene 1,1-dichloroethane	1 1	60	-	-	<1 <1
Cis-1,2-dichloroethene	1	60	-	-	<1 <1
Bromochloromethane	1		-	-	<1
Chloroform	1	250	-	-	<1
2,2-dichloropropane	1	-	-	-	<1
1,2-dichloroethane	1	3	-	-	<1
1,1,1-trichloroethane	1	-	-	-	<1
1,1-dichloropropene	1	-	-	-	<1
Cyclohexane	1	-	-	-	<1
Carbon tetrachloride	1	3	-	-	<1
Benzene	1	1	-	-	<1
Dibromomethane	1	-	-	-	<1
1,2-dichloropropane	1	-	-	-	<1
Trichloroethene	1	-	-	-	<1
Bromodichloromethane trans-1,3-dichloropropene	1 1	100	-	-	<1 <1
cis-1,3-dichloropropene	1	100	_	-	<1
1,1,2-trichloroethane	1	-	_	_	<1
Toluene	1	800	_	_	<1
1,3-dichloropropane	1	-	-	-	<1
Dibromochloromethane	1	-	-	-	<1
1,2-dibromoethane	1	-	-	-	<1
Tetrachloroethene	1	50	-	-	<1
1,1,1,2-tetrachloroethane	1	-	-	-	<1
Chlorobenzene	1	300	-	-	<1
Ethylbenzene	1	300	-	-	<1
Bromoform	1	-	-	-	<1
m+p-xylene	2	-	-	-	<2
Styrene	1	30	-	-	<1
1,1,2,2-tetrachloroethane	1	-	-	-	<1
o-xylene 1,2,3-trichloropropane	1 1	-	-	-	<1 <1
I,2,3-tricnioropropane Isopropylbenzene	1	-	-	-	<1 <1
Bromobenzene	1	-	-	-	<1
n-propyl benzene	1	-	-	-	<1
2-chlorotoluene	1	-	-	-	<1
4-chlorotoluene	1	-	-	-	<1
1,3,5-trimethyl benzene	1	-	-	-	<1
Tert-butyl benzene	1	-	-	-	<1
1,2,4-trimethyl benzene	1	-	-	-	<1
1,3-dichlorobenzene	1	20	-	-	<1
Sec-butyl benzene	1	-	-	-	<1
1,4-dichlorobenzene	1	40	-	-	<1
4-isopropyl toluene 1,2-dichlorobenzene	1	- 1500	-	-	<1 <1
1,2-uiciiioiopelizelle	1	1500	-	-	<1 <1
	-				
n-butyl benzene 1,2-dibromo-3-chloropropane	1	-	-	-	<1
n-butyl benzene		30	-	-	<1 <1 <1

Concentration above the SAC Concentration above the PQL GIL >PQL

VALUE Bold Red

TABLE Q2 GROUNDWATER QA/QC SUMMA	ARY																																																							
		Dichlorodifluoromethane Chloromethane	Vinyl Chloride	Bromomethane	Chloroethane	Trichlorofluoromethane	1,1-Dichloroethene	Trans-1,2-dichloroethene	1,1-dichloroethane	Cis-1,2-dichloroethene	Bromochloromethane	Chloroform	2,2-dichloropropane	1,2-dichloroethane	1,1,1-trichloroethane	1,1-dichloropropene	Cyclohexane	Carbon tetrachloride	Benzene	Dibromomethane	1,2-dichloropropane	Trichloroethene	Bromodichloromethane	trans-1,3-dichloropropene	cis-1,3-dichloropropene	1,1,2-trichloroethane	Toluene	1,3-dichloropropane	Dibromochloromethane	1,2-dibromoethane	Tetrachloroethene	1,1,2-tetrachloroethane	Chlorobenzene	Ethylbenzene	Bromoform	m+p-xylene Styrene	1,1,2,2-tetrachloroethane	o-xylene	1,2,3-trichloropropane	Isopropylbenzene	Bromobenzene	n-propyl benzene	2-chlorotoluene	4-chlorotoluene	1,3,5-trimethyl benzene	lert-butyl benzene 1.2 4-trimethyl benzene	1.3-dichlorobenzene	Sec-butyl benzene	1,4-dichlorobenzene	4-isopropyl toluene	1,2-dichlorobenzene	n-butyl benzene	1,2-dibromo-3-chloropropane	1,2,4-trichlorobenzene	Hexachlorobutadiene	1,2,3-trichlorobenzene
	PQL Envirolab SYD	10 10	10	10	10	10	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 2	2 1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1
	PQL Envirolab VIC	10 10	10	10	10	10	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 2	2 1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1
																																																								_
Intra	MW601	<10 <10		<10	<10	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 <	2 <1	l <1	<1	<1	<1	<1	<1	<1 .	<1 •	<1 •	<1 <	1 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1
laboratory	WDUP601	<10 <10	<10	<10	<10	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 <	2 <1	l <1	<1	<1	<1	<1	<1	<1 .	<1 •	<1 •	<1 <	1 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1
duplicate	MEAN	nc nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc n	nc no	nc	nc	nc	nc	nc	nc	nc	nc i	nc i	nc n	c no	nc	nc	nc	nc	nc	nc	nc	nc	ΛC
	RPD %	nc nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc n	nc no	nc	nc	nc	nc	nc	nc	nc i	nc i	nc i	nc n	c no	nc	nc	nc	nc	nc	nc	nc	nc	ac
																																															\bot						-	\rightarrow	\perp	
Inter		<10 <10	<10	<10	<10	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 <	2 <1	l <1	<1	<1	<1	<1	<1	<1 .	<1 •	<1 •	<1 <	1 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1
laboratory	WDUP602	<10 <10	<10	<10	<10	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 <	2 <1	l <1	<1	<1	<1	<1	<1	<1 .	<1 •	<1 •	<1 <	1 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1
duplicate	MEAN	nc nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc n	nc no	nc	nc	nc	nc	nc	nc	nc i	nc i	nc i	nc n	c no	nc	nc	nc	nc	nc	nc	nc	nc	nc
	RPD %	nc nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc n	nc no	nc	nc	nc	nc	nc	nc	nc i	nc i	nc i	nc n	c no	nc	nc	nc	nc	nc	nc	nc	nc	nc
																																																			\perp					

	TRH C6 - C10	TRH >C10-C16	TRH >C16-C34	TRH >C34-C40	Benzene	Toluene	Ethylbenzene	m+p-xylene	o-Xylene	Naphthalene	Acenaphthylene	Acenaph-thene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthrace	Chrysene	Benzo(b.j+k)fluora	Benzo(a)pyrene	Indeno(1,2,3-c,d)p	Dibenzo(a,h)anthr	Benzo(g,h,i)peryle	Arsenic	Cadmium	Chromium VI	Copper	Lead	Mercury	Nickel	Zinc
PQL Envirolab SYD	10	50	100	100	1	1	1	2	1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	1	0.1	1	1	1	0.05	1	1
PQL Envirolab VIC	10	50	100	100	1.0	1.0	1.0	2.0	1.0	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	1	0.1	1	1	1	0.05	1	1
MW601 WDUP601 MEAN RPD %	<10 nc nc	<50 nc nc	<100 <100 nc nc	<100 <100 nc nc	<1 <1 nc nc	<1 <1 nc nc	<1 <1 nc nc	<2 <2 nc nc	<1 <1 nc nc	<0.2 <0.2 nc nc	<0.1 <0.1 nc nc	<0.1 <0.1 nc nc	<0.1 <0.1 nc nc	<0.1 <0.1 nc nc	<0.1 <0.1 nc nc	<0.1 <0.1 nc nc	<0.1 <0.1 nc nc	<0.1 <0.1 nc nc	<0.1 <0.1 nc nc	<0.2 <0.2 nc nc	<0.1 <0.1 nc nc	<0.1 <0.1 nc nc	<0.1 <0.1 nc nc	<0.1 <0.1 nc nc	1 2 1.5 67%	<0.1 <0.1 nc nc	<1 <1 nc nc	<1 <1 nc nc	<1 <1 nc nc	<0.05 <0.05 nc nc	7%	12 11 11.5 9%
						_																			-		-1	3	-1			41
						_																		_								33.5
RPD %	nc	126%	67%	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	120%	40%	164%	40%	120%			45%
TB-W601 6/06/2022	-	-	-	-	<1	<1	<1	<2	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TS-W601	-	-	-	-	85%	92%	96%	96%	98%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
6/06/2022																																
	PQL Envirolab VIC MW601 WDUP601 MEAN RPD % MW603 WDUP602 MEAN RPD % TB-W601 6/06/2022 TS-W601	PQL Envirolab SYD 10 PQL Envirolab VIC 10 MW601 <10 MDUP601 <10 MEAN nc RPD % nc MW603 <10 MEAN nc RPD % nc TB-W601 -6/06/2022 TS-W601 -	PQL Envirolab SYD	PQL Envirolab SYD	PQL Envirolab SYD 10 50 100 100	F	PQL Envirolab SYD 10 50 100 100 1 1 1 1 1 1	PQL Envirolab SYD 10 50 100 100 1 1 1 1 1 1	PQL Envirolab SYD 10 50 100 100 1 1 1 2 PQL Envirolab VIC 10 50 100 100 1 1 1 2 PQL Envirolab VIC 10 50 100 100 1.0 1.0 1.0 2.0 MW601 <10 <50 <100 <100 <1 <1 <1 <1 <2 WDUP601 <10 <50 <100 <100 <1 <1 <1 <1 <2 MEAN nc nc nc nc nc nc nc n	PQL Envirolab SYD 10 50 100 100 1 1 1 2 1	PQL Envirolab SYD 10 50 100 100 1 1 1 2 1 0.2	PQL Envirolab SYD 10 50 100 100 1 1 1 2 1 0.2 0.1	PQL Envirolab SYD 10 50 100 100 1 1 1 2 1 0.2 0.1 0.1	PQL Envirolab SYD 10 50 100 100 1 1 1 2 1 0.2 0.1 0.1 0.1	PQL Envirolab SYD 10 50 100 100 1 1 1 2 1 0.2 0.1 0.1 0.1 0.1	PQL Envirolab SYD 10 50 100 100 1 1 1 2 1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	PQL Envirolab SYD 10 50 100 100 1 1 1 2 1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	PQL Envirolab SYD 10 50 100 100 1 1 1 2 1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	PQL Envirolab SYD 10 50 100 100 1 1 1 2 1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	PQL Envirolab SYD 10 50 100 100 1 1 1 2 1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	PQL Envirolab SYD 10 50 100 100 1 1 1 2 1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	PQL Envirolab SYD 10 50 100 100 1 1 1 1 2 1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	PQL Envirolab SYD 10 50 100 100 1 1 1 1 2 1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	PQL Envirolab SYD 10 50 100 100 1 1 1 2 1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	PQL Envirolab SYD 10 50 100 100 1 1 1 2 1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	PQL Envirolab SYD 10 50 100 100 1 1 1 1 2 1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	PQL Envirolab SYD 10 50 100 100 1 1 1 1 2 1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	PQL Envirolab SYD 10 50 100 100 1 1 1 2 1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	POL Envirolab SYD POL Envirolab SYD POL Envirolab SYD POL Envirolab VIC POL Pol VIC POL Pol VIC POL Envirolab VIC POL Pol VIC POL Pol VIC POL Envirolab VIC POL Pol VIC POL Pol VIC POL Pol VIC POL Envirolab VIC POL Pol VIC POL Pol VIC POL Envirolab VIC POL Pol VIC	PQL Envirolab SYD 10 50 100 100 1 1 1 2 1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	POL Envirolab SYD 10 50 100 100 1 1 1 1 2 1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	PQL Envirolab SVD 10 50 100 100 1 1 1 1 2 1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Copyright JK Environments

Appendix D: Borehole Logs

Log No. 701 1/2 SDUP701 (0.14-0.55)

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED CAMHS BUILDING

Location: NEPEAN HOSPITAL, DERBY STREET, KINGSWOOD, NSW

Job No.: E33780PL Method: SPIRAL AUGER R.L. Surface: N/A

Date:	28/5/2	22						D	atum:	-
Plant ⁻	Туре:	JK205			Logg	ged/Checked by: A.M./T.H.				
Groundwater Record FS	ASS ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-			0	A A		CONCRETE: 140mm.t				_
TION			0.5 -		-	FILL: Silty gravelly clay, low to medium plasticity, brown, fine to coarse grained igneous, sub-angular.	w <pl< td=""><td></td><td></td><td>SCREEN: 1.70kg 0.14-0.55m NO FCF</td></pl<>			SCREEN: 1.70kg 0.14-0.55m NO FCF
		N = 9 2,4,5	1 -		CI-CH	Silty CLAY: medium to high plasticity, grey mottled red brown, trace of ironstone gravel and root fibres.	w <pl< td=""><td></td><td></td><td>RESIDUAL RESIDUAL</td></pl<>			RESIDUAL RESIDUAL
		N = 15 5,7,8	1.5 -		-	Extremely Weathered claystone: silty	XW /			- - - - BRINGELLY SHALE
			2 - 2.5 - 3 - 3.5 -			CLAY, low to medium plasticity, dark grey. CLAYSTONE: grey brown.	w <pl DW</pl 			LOW RESISTANCE

PYRIGHT

Log No. 701 2/2 SDUP701 (0.14-0.55)

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED CAMHS BUILDING

Location: NEPEAN HOSPITAL, DERBY STREET, KINGSWOOD, NSW

Job No.: E33780PL Method: SPIRAL AUGER R.L. Surface: N/A

	NO.: E	:33780PL /22	-		weth	ioa: SPIRAL AUGER			.L. Suri atum:	
		: JK205			Logg	ged/Checked by: A.M./T.H.				
Groundwater Record	ES ASS ASB SAL SAL	DB Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			4			END OF BOREHOLE AT 6.0m				MODERATE RESISTANCE GROUNDWATER MONITORING WELL INSTALLED TO 6.0m CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 6.0m TO 2.0m. CASING 2.0m TO 0m. 2mm SAND FILTER PACK 6.0m TO 2.1m. BENTONITE SEAL 2.1m TO 1.0m. BACKFILLED WITH SAND (AND/OR CUTTINGS) TO THE SURFACE. COMPLETED WITH CONCRETED GATIC COVER.

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED CAMHS BUILDING

Location: NEPEAN HOSPITAL, DERBY STREET, KINGSWOOD, NSW

Job No.: E33780PL Method: SPIRAL AUGER R.L. Surface: N/A

Date:	28/5/2	22						D	atum:	-
Plant T	уре:	JK205			Logg	ged/Checked by: A.M./T.H.				
	ASS ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLETION			0 - - -			CONCRETE: 60mm.t FILL: Silty clay, medium to high plasticity, brown and orange brown, trace of root fibres.				- SCREEN: 5.1kg 0.06-0.5m NO FCF
		N = 7 3,3,4	0.5 - - - -		CI-CH	Silty CLAY: medium to high plasticity, grey mottled red brown, trace of ironstone gravel and root fibres.				RESIDUAL - - -
			- - - -			END OF BOREHOLE AT 1.0m				-
			1.5 - - - -							-
			2 - - -							- - -
			2.5 — - -							-
			3 - -							-
			3.5							

PYRIGHT

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED CAMHS BUILDING

Location: NEPEAN HOSPITAL, DERBY STREET, KINGSWOOD, NSW

Job No.: E33780PL Method: SPIRAL AUGER R.L. Surface: N/A

Date: 28/5/2	22						D	atum:	-
Plant Type:	JK205			Logo	ged/Checked by: A.M./T.H.				
Groundwater Record ES ASS ASS SAMPLES SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION	N = 10	0		CI-CH	FILL: Clayey silt, low to medium plasticity, dark brown, with organic material, trace of concrete fragments. FILL: Silty clay, low to medium plasticity, brown, trace of ironstone and igneous gravel. Silty CLAY: medium to high plasticity, brown mottled red brown, trace of ironstone gravel.	w <pl td="" w<pl="" w<pl<=""><td></td><td></td><td>MULCH COVER SCREEN: 5.7kg 0-0.2m NO FCF SCREEN: 1.4kg 0.2-0.3m NO FCF RESIDUAL</td></pl>			MULCH COVER SCREEN: 5.7kg 0-0.2m NO FCF SCREEN: 1.4kg 0.2-0.3m NO FCF RESIDUAL
	4,5,5	- - 1 - -			END OF BOREHOLE AT 1.0m				-
		- 1.5 – - -							- - - -
		2 - - -							- - - -
		2.5							- - -
		3 - - - - 3.5							- - -

JKEnvironments ENVIRONMENTAL LOG

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED CAMHS BUILDING

Location: NEPEAN HOSPITAL, DERBY STREET, KINGSWOOD, NSW

Job No.: E33780PL Method: SPIRAL AUGER R.L. Surface: N/A

Date:	: 28	3/5/2	22	Datum: -					-		
Plant Type: JK205						Logg	Logged/Checked by: A.M./T.H.				
Groundwater Record ES ASS SAL DB Field Tests		Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (KPa.)	Remarks	
DRY ON COMPLE-	-			0	A A A		CONCRETE: 170mm.t				-
TION				0.5 –		-	FILL: Silty gravelly clay, low to medium plasticity, brown, fine to coarse grained igneous, sub-angular, trace of ironstone, igneous and sandstone gravel, brick fragments,	w≈PL			SCREEN: 7.4kg 0.17-1.0m NO FCF SCREEN: 5.9kg
			N = 6 2,3,3				slag, ash and root fibres.	1.0-1.5m - NO FCF - -			
											-
			N = 14 3,6,8	1.5 -		CI-CH	Silty CLAY: medium to high plasticity, grey mottled red brown and orange brown, trace of ironstone gravel.	w <pl< td=""><td></td><td></td><td>RESIDUAL - - -</td></pl<>			RESIDUAL - - -
,		\dagger		2			END OF BOREHOLE AT 2.0m				_
				2.5 -							- - - -
				3 -							-

DPYRIGHT

JKEnvironments ENVIRONMENTAL LOG

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED CAMHS BUILDING

Location: NEPEAN HOSPITAL, DERBY STREET, KINGSWOOD, NSW

Job No.: E33780PL Method: HAND AUGER R.L. Surface: N/A

JOD NO.: E33/80PL	. '	Method: HAND AUGER R.L. Surface: N/A				
Date: 4/6/22		Datum: -				
Plant Type:	l	Logged/Checked by: H.L./T.H.				
Groundwater Record ES ASS ASB SAMPLES SAL DB Field Tests	Depth (m) Graphic Log	Classification Classi	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)	;		
DRY ON	0 4.5.4	CONCRETE: 140mm.t	VINYL COVE	R		
COMPLE-TION TO THE PROPERTY OF	0.5 — — — — — — — — — — — — — — — — — — —	medium plasticity, dark brown, fine to coarse grained igneous gravel, sub-	W <pl 0.14-0.3m="" 2.1="" <="" at="" augei="" bedrock="" claysto="" fcf="" hand="" no="" on="" refusal="" screen:="" td=""><td>R 0.33m</td></pl>	R 0.33m		
	2.5		- - - - -			
	3.5		-			

DPYRIGHT

JKEnvironments ENVIRONMENTAL LOG

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED CAMHS BUILDING

Location: NEPEAN HOSPITAL, DERBY STREET, KINGSWOOD, NSW

Job No.: E33780PL Method: HAND AUGER R.L. Surface: N/A

Date: 4/6/22 Plant Type: Logged/Checked by: H.L./T.H.	ı
Groundwater Record ASS ASS ASS BALB SAMPLES SAL Depth (m) Depth (m) Classification Classification Anisture Condition/ Weathering Strength/ Rei. Density Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLETION CITY CARROLL SIRV gravelly clay, low to medium plasticity, dark brown, trace of gravels and continued and metal. CI-CI CITY or medium plasticity, orange brown. END OF BOREHOLE AT 0.85m CI-CI CITY orange brown. CI-CI	SCREEN: 5.6kg - 0-0.3m NO FCF INSUFFICIENT - RETURN FOR BULK - SCREEN RESIDUAL

DPYRIGHT

JKEnvironments **ENVIRONMENTAL LOG**

Environmental logs are not to be used for geotechnical purposes

Client: **HEALTH INFRASTRUCTURE**

Project: PROPOSED CAMHS BUILDING

Location: NEPEAN HOSPITAL, DERBY STREET, KINGSWOOD, NSW

COMPLE-TION plasticity, brown, trace of igneous and sandstone gravel and metal 0-0.3m NO FCF FILL: Silty clay, low to medium w <pl insufficient<="" th=""><th colspan="3">Job No.: E33780PL</th><th colspan="3">Method: HAND AUGER R.L. Surface: N/A</th><th>face: N/A</th></pl>	Job No. : E33780PL			Method: HAND AUGER R.L. Surface: N/A			face: N/A			
DESCRIPTION Same S	Date: 4/6/22				Datum: -					
DRY ON COMPLETION Complete	Plant Type	:			Logged/Checked by: H.L./T.H.					
COMPLETION FILL: Silty clay, low to medium plasticity, brown, trace of igneous and sandstone gravel and metal. FILL: Silty clay, low to medium plasticity, dark brown, trace of igneous gravel and roof fibres. CL-CI Silty Clay. low to medium plasticity, dark brown, trace of igneous gravel and roof fibres. CL-CI Silty Clay. low to medium plasticity, orange brown. END OF BOREHOLE AT 0.85m 1.5 -	Groundwater Record ES ASS SAMPLES	DB Field Tests		Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
plasticity, dark brown, trace of igneous gravel and root fibres. CL-CI Sity CLAY: low to medium plasticity, orange brown. END OF BOREHOLE AT 0.85m 1- 1.5- 2- 2- - 1.5	DRY ON COMPLE-		-			plasticity, brown, trace of igneous and	w <pl< td=""><td></td><td></td><td>SCREEN: 5.9kg - 0-0.3m</td></pl<>			SCREEN: 5.9kg - 0-0.3m
			0.5 - -		CL-CI	plasticity, dark brown, trace of igneous gravel and root fibres. Silty CLAY: low to medium plasticity,				INSUFFICIENT - RETURN FOR BULK SCREEN RESIDUAL -
			-			END OF BOREHOLE AT 0.85m				_
			1.5							

ENVIRONMENTAL LOGS EXPLANATION NOTES

INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties—soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	> 200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	>50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)		
Very Soft (VS)	≤25	≤ 12		
Soft (S)	> 25 and ≤ 50	> 12 and ≤ 25		
Firm (F)	> 50 and ≤ 100	> 25 and ≤ 50		
Stiff (St)	> 100 and ≤ 200	> 50 and ≤ 100		
Very Stiff (VSt)	> 200 and ≤ 400	> 100 and ≤ 200		
Hard (Hd)	> 400	> 200		
Friable (Fr)	Strength not attainable – soil crumbles			

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

INVESTIGATION METHODS

1

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the

structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is

described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

 In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

> N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N > 30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'Nc' on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs unless noted in the report.

SYMBOL LEGENDS

SOIL ROCK FILL CONGLOMERATE TOPSOIL SANDSTONE CLAY (CL, CI, CH) SHALE/MUDSTONE SILT (ML, MH) SILTSTONE SAND (SP, SW) CLAYSTONE GRAVEL (GP, GW) COAL SANDY CLAY (CL, CI, CH) LAMINITE SILTY CLAY (CL, CI, CH) LIMESTONE CLAYEY SAND (SC) PHYLLITE, SCHIST SILTY SAND (SM) TUFF GRAVELLY CLAY (CL, CI, CH) GRANITE, GABBRO CLAYEY GRAVEL (GC) DOLERITE, DIORITE SANDY SILT (ML, MH) BASALT, ANDESITE 77 77 77 7 77 77 77 77 77 QUARTZITE PEAT AND HIGHLY ORGANIC SOILS (Pt)

OTHER MATERIALS

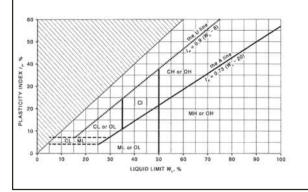
CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

Ma	Major Divisions		Typical Names	Field Classification of Sand and Gravel	Laboratory Cl	assification
ianis	GRAVEL (more than half	GW	Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u >4 1 <c<sub>c<3</c<sub>
rsize fract	of coarse fraction is larger than 2.36mm	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
luding ove		GM	Gravel-silt mixtures and gravel- sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt
of sail exclu		GC	Gravel-clay mixtures and gravel- sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	Fines behave as clay
than 65% eater thar	SAND (more than half		Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Cu > 6 1 < Cc < 3
ioi (mare	of coarse fraction is smaller than	SP	Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
Cersegrainedsoi (morethan 69% of soil excluding oversize fraction is greater than 0075mm)	2.36mm)	SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	
Coars		SC	Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A

				Field Classification of Silt and Clay			
Majo	Major Divisions		Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm
SILT and CLAY (low to medium		ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line
ainedsoils (more than 35% of soil excl oversize fraction is less than 0.075mm)	plasticity)	CL, CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line
in 35% ss than		OL	Organic silt	Low to medium	Slow	Low	Below A line
onisle	SILT and CLAY	МН	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line
oils (m e fracti	(high plasticity)	СН	Inorganic clay of high plasticity	High to very high	None	High	Above A line
inegainedsoils (more than 35% of soil excluding oversize fraction is less than 0,075mm)		ОН	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line
.=	Highly organic soil	Pt	Peat, highly organic soil	-	-	-	-

Laboratory Classification Criteria

A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature $1 < C_c < 3$. Otherwise, the soil is poorly graded. These coefficients are given by:


$$C_U = \frac{D_{60}}{D_{10}}$$
 and $C_C = \frac{(D_{30})^2}{D_{10} D_{60}}$

Where D_{10} , D_{30} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- Where the grading is determined from laboratory tests, it is defined by coefficients of curvature (C_c) and uniformity (C_u) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

Modified Casagrande Chart for Classifying Silts and Clays according to their Behaviour

LOG SYMBOLS

Log Column	Symbol	Definition	Definition			
Groundwater Record		Standing water level	Standing water level. Time delay following completion of drilling/excavation may be shown.			
	—с—	Extent of borehole/test pit collapse shortly after drilling/excavation.				
	•	Groundwater seepa	Groundwater seepage into borehole or test pit noted during drilling or excav			
Samples	ES	•	epth indicated, for environm			
	U50		diameter tube sample taken			
	DB		le taken over depth indicate			
	DS	_	sample taken over depth ind			
	ASB	•	er depth indicated, for asbes			
	ASS	· ·	er depth indicated, for acid s			
	SAL	•	er depth indicated, for salinit			
	PFAS	Soil sample taken ov	er depth indicated, for analy	sis of Per- and Polyfluoroalkyl Substances	S.	
Field Tests	N = 17 4, 7, 10	figures show blows p		tween depths indicated by lines. Indivi isal' refers to apparent hammer refusal w		
	N _c = 5 7 3R	figures show blows p	er 150mm penetration for 6	netween depths indicated by lines. Indivi 0° solid cone driven by SPT hammer. 'R' re anding 150mm depth increment.		
	VNS = 25	Vane shear reading i	Vane shear reading in kPa of undrained shear strength.			
	PID = 100	_	Photoionisation detector reading in ppm (soil sample headspace test).			
Moisture Condition	w > PL	Moisture content es	timated to be greater than p	lastic limit.		
(Fine Grained Soils)	w≈ PL	Moisture content es	timated to be approximately	equal to plastic limit.		
	w < PL	Moisture content es	Moisture content estimated to be less than plastic limit.			
	w≈LL	Moisture content estimated to be near liquid limit.				
	w > LL	Moisture content estimated to be wet of liquid limit.				
(Coarse Grained Soils)	D	DRY – runs freely through fingers.				
	M	MOIST – does not run freely but no free water visible on soil surface.				
	W	WET – free wate	WET – free water visible on soil surface.			
Strength (Consistency)	VS	VERY SOFT — unconfined compressive strength \leq 25kPa.				
Cohesive Soils	S	SOFT — unconfined compressive strength > 25kPa and ≤ 50kPa.				
	F	FIRM — unconfined compressive strength > 50kPa and ≤ 100kPa.				
	St	STIFF – un	· · · · · · · · · · · · · · · · · · ·			
	VSt	VERY STIFF – un	confined compressive streng	gth > 200kPa and ≤ 400kPa.		
	Hd	HARD – un	• •			
	Fr	FRIABLE – str	ength not attainable, soil cru	imbles.		
	()	Bracketed symbol is assessment.	Bracketed symbol indicates estimated consistency based on tactile examination or other			
Density Index/ Relative Density			Density Index (I _D) Range (%)	SPT 'N' Value Range (Blows/300mm)		
(Cohesionless Soils)	VL	VERY LOOSE	≤ 15	0-4		
	L	LOOSE	> 15 and ≤ 35	4-10		
	MD	MEDIUM DENSE	> 35 and ≤ 65	10 – 30		
	D	DENSE	> 65 and ≤ 85	30 – 50		
	VD	VERY DENSE	> 85	>50		
	()	Bracketed symbol in	dicates estimated density ba	sed on ease of drilling or other assessme	ent.	

Log Column	Symbol	Definition	Definition				
Hand Penetrometer Readings	300 250		Measures reading in kPa of unconfined compressive strength. Numbers indicate individual test results on representative undisturbed material unless noted otherwise.				
Remarks	'V' bit	Hardened steel	Hardened steel 'V' shaped bit.				
	'TC' bit	Twin pronged to	ungsten carbide bit.				
	T ₆₀	Penetration of a without rotation	nuger string in mm under static load of rig applied by drill head hydraulics n of augers.				
	Soil Origin	The geological origin of the soil can generally be described as:					
		RESIDUAL	 soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock. 				
		EXTREMELY WEATHERED	 soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock. 				
		ALLUVIAL	– soil deposited by creeks and rivers.				
		ESTUARINE	 soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents. 				
		MARINE	 soil deposited in a marine environment. 				
		AEOLIAN	 soil carried and deposited by wind. 				
		COLLUVIAL	 soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits. 				
		LITTORAL	– beach deposited soil.				

Classification of Material Weathering

Term		Abbreviation		Definition	
Residual Soil			ss.	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.	
Extremely Weathered	xw		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.		
Highly Weathered	Distinctly Weathered	HW	DW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.	
Moderately Weathered	(Note 1)	MW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.	
Slightly Weathered	SW		Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.		
Fresh		FR		Rock shows no sign of decomposition of individual minerals or colour changes.	

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: 'Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

Rock Material Strength Classification

				Guide to Strength
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index IS ₍₅₀₎ (MPa)	Field Assessment
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium Strength	M	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High Strength	EH	> 200	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

Appendix E: Laboratory Report(s) & COC Documents

Envirolab Services Pty Ltd ABN 37 112 535 645

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 296694

Client Details	
Client	JK Environments
Attention	Harry Leonard
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E33780PL, Kingswood
Number of Samples	14 Soil, 1 Water
Date samples received	30/05/2022
Date completed instructions received	30/05/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	06/06/2022				
Date of Issue	06/06/2022				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC	17025 - Testing. Tests not covered by NATA are denoted with *				

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager Josh Williams, Organics and LC Supervisor Kyle Gavrily, Chemist Lucy Zhu, Asbestos Supervisor **Authorised By**

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		296694-1	296694-2	296694-3	296694-5	296694-6
Your Reference	UNITS	BH701	BH701	BH702	BH703	BH703
Depth		0.14-0.55	0.55-0.9	0.06-0.3	0.0-0.2	0.2-0.5
Date Sampled		28/05/2022	28/05/2022	28/05/2022	28/05/2022	28/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	02/06/2022	02/06/2022	02/06/2022	02/06/2022	02/06/2022
Date analysed	-	06/06/2022	06/06/2022	06/06/2022	06/06/2022	06/06/2022
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	95	98	101	87	100

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		296694-8	296694-10	296694-11	296694-12	296694-13
Your Reference	UNITS	BH704	BH704	TB-S701	TS-S701	SDUP701
Depth		0.17-0.4	1.5-1.7	-	-	-
Date Sampled		28/05/2022	28/05/2022	28/05/2022	28/05/2022	28/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	02/06/2022	02/06/2022	02/06/2022	02/06/2022	02/06/2022
Date analysed	-	06/06/2022	06/06/2022	06/06/2022	06/06/2022	06/06/2022
TRH C6 - C9	mg/kg	<25	<25	<25		<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25		<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25		<25
Benzene	mg/kg	<0.2	<0.2	<0.2	101%	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	102%	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	103%	<1
m+p-xylene	mg/kg	<2	<2	<2	103%	<2
o-Xylene	mg/kg	<1	<1	<1	102%	<1
Naphthalene	mg/kg	<1	<1	<1		<1
Total +ve Xylenes	mg/kg	<1	<1	<1		<1
Surrogate aaa-Trifluorotoluene	%	100	97	101	99	96

svTRH (C10-C40) in Soil						
Our Reference		296694-1	296694-2	296694-3	296694-5	296694-6
Your Reference	UNITS	BH701	BH701	BH702	BH703	BH703
Depth		0.14-0.55	0.55-0.9	0.06-0.3	0.0-0.2	0.2-0.5
Date Sampled		28/05/2022	28/05/2022	28/05/2022	28/05/2022	28/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	02/06/2022	02/06/2022	02/06/2022	02/06/2022	02/06/2022
Date analysed	-	03/06/2022	03/06/2022	03/06/2022	03/06/2022	03/06/2022
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	120	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	120	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	130	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	130	<50
Surrogate o-Terphenyl	%	84	79	81	91	81

svTRH (C10-C40) in Soil					
Our Reference		296694-8	296694-10	296694-11	296694-13
Your Reference	UNITS	BH704	BH704	TB-S701	SDUP701
Depth		0.17-0.4	1.5-1.7	-	-
Date Sampled		28/05/2022	28/05/2022	28/05/2022	28/05/2022
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	02/06/2022	02/06/2022	02/06/2022	02/06/2022
Date analysed	-	03/06/2022	03/06/2022	03/06/2022	03/06/2022
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50
Surrogate o-Terphenyl	%	83	88	88	94

PAHs in Soil						
Our Reference		296694-1	296694-2	296694-3	296694-5	296694-6
Your Reference	UNITS	BH701	BH701	BH702	BH703	BH703
Depth		0.14-0.55	0.55-0.9	0.06-0.3	0.0-0.2	0.2-0.5
Date Sampled		28/05/2022	28/05/2022	28/05/2022	28/05/2022	28/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	02/06/2022	02/06/2022	02/06/2022	02/06/2022	02/06/2022
Date analysed	-	02/06/2022	02/06/2022	02/06/2022	02/06/2022	02/06/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.07	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	0.5	<0.05	<0.05	0.2	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	86	84	77	94	78

Envirolab Reference: 296694

Revision No: R00

PAHs in Soil					
Our Reference		296694-8	296694-10	296694-11	296694-13
Your Reference	UNITS	BH704	BH704	TB-S701	SDUP701
Depth		0.17-0.4	1.5-1.7	-	-
Date Sampled		28/05/2022	28/05/2022	28/05/2022	28/05/2022
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	02/06/2022	02/06/2022	02/06/2022	02/06/2022
Date analysed	-	02/06/2022	02/06/2022	02/06/2022	02/06/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	0.3
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	<0.1	<0.1	0.5
Pyrene	mg/kg	0.2	<0.1	<0.1	0.4
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	0.2
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.2
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	0.3
Benzo(a)pyrene	mg/kg	0.07	<0.05	<0.05	0.2
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.2
Total +ve PAH's	mg/kg	0.57	<0.05	<0.05	2.3
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	83	83	75	83

Organochlorine Pesticides in soil						
Our Reference		296694-1	296694-3	296694-5	296694-8	296694-13
Your Reference	UNITS	BH701	BH702	BH703	BH704	SDUP701
Depth		0.14-0.55	0.06-0.3	0.0-0.2	0.17-0.4	-
Date Sampled		28/05/2022	28/05/2022	28/05/2022	28/05/2022	28/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	02/06/2022	02/06/2022	02/06/2022	02/06/2022	02/06/2022
Date analysed	-	02/06/2022	02/06/2022	02/06/2022	02/06/2022	02/06/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	81	80	90	88	82

Organophosphorus Pesticides in Soil						
Our Reference		296694-1	296694-3	296694-5	296694-8	296694-13
Your Reference	UNITS	BH701	BH702	BH703	BH704	SDUP701
Depth		0.14-0.55	0.06-0.3	0.0-0.2	0.17-0.4	-
Date Sampled		28/05/2022	28/05/2022	28/05/2022	28/05/2022	28/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	02/06/2022	02/06/2022	02/06/2022	02/06/2022	02/06/2022
Date analysed	-	02/06/2022	02/06/2022	02/06/2022	02/06/2022	02/06/2022
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	81	80	90	88	82

PCBs in Soil						
Our Reference		296694-1	296694-3	296694-5	296694-8	296694-13
Your Reference	UNITS	BH701	BH702	BH703	BH704	SDUP701
Depth		0.14-0.55	0.06-0.3	0.0-0.2	0.17-0.4	-
Date Sampled		28/05/2022	28/05/2022	28/05/2022	28/05/2022	28/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	02/06/2022	02/06/2022	02/06/2022	02/06/2022	02/06/2022
Date analysed	-	02/06/2022	02/06/2022	02/06/2022	02/06/2022	02/06/2022
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	81	80	90	88	82

Acid Extractable metals in soil						
Our Reference		296694-1	296694-2	296694-3	296694-5	296694-6
Your Reference	UNITS	BH701	BH701	BH702	BH703	BH703
Depth		0.14-0.55	0.55-0.9	0.06-0.3	0.0-0.2	0.2-0.5
Date Sampled		28/05/2022	28/05/2022	28/05/2022	28/05/2022	28/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	02/06/2022	02/06/2022	02/06/2022	02/06/2022	02/06/2022
Date analysed	-	03/06/2022	03/06/2022	03/06/2022	03/06/2022	03/06/2022
Arsenic	mg/kg	7	<4	4	<4	4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	8	9	11	11	12
Copper	mg/kg	26	13	19	25	28
Lead	mg/kg	7	5	11	14	12
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	13	4	6	9	11
Zinc	mg/kg	45	18	19	50	44

Acid Extractable metals in soil					
Our Reference		296694-8	296694-10	296694-11	296694-13
Your Reference	UNITS	BH704	BH704	TB-S701	SDUP701
Depth		0.17-0.4	1.5-1.7	-	-
Date Sampled		28/05/2022	28/05/2022	28/05/2022	28/05/2022
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	02/06/2022	02/06/2022	02/06/2022	02/06/2022
Date analysed	-	03/06/2022	03/06/2022	03/06/2022	03/06/2022
Arsenic	mg/kg	5	6	<4	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	13	9	3	5
Copper	mg/kg	34	18	<1	28
Lead	mg/kg	13	5	3	4
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	11	7	<1	13
Zinc	mg/kg	45	31	1	32

Moisture						
Our Reference		296694-1	296694-2	296694-3	296694-5	296694-6
Your Reference	UNITS	BH701	BH701	BH702	BH703	BH703
Depth		0.14-0.55	0.55-0.9	0.06-0.3	0.0-0.2	0.2-0.5
Date Sampled		28/05/2022	28/05/2022	28/05/2022	28/05/2022	28/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	01/06/2022	01/06/2022	01/06/2022	01/06/2022	01/06/2022
Date analysed	-	02/06/2022	02/06/2022	02/06/2022	02/06/2022	02/06/2022
Moisture	%	17	18	19	26	15

Moisture					
Our Reference		296694-8	296694-10	296694-11	296694-13
Your Reference	UNITS	BH704	BH704	TB-S701	SDUP701
Depth		0.17-0.4	1.5-1.7	-	-
Date Sampled		28/05/2022	28/05/2022	28/05/2022	28/05/2022
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	02/06/2022	02/06/2022	02/06/2022	02/06/2022
Date analysed	-	03/06/2022	03/06/2022	03/06/2022	03/06/2022
Moisture	%	21	18	<0.1	8.2

Asbestos ID - soils NEPM - ASB-001					
Our Reference		296694-1	296694-3	296694-5	296694-8
Your Reference	UNITS	BH701	BH702	BH703	BH704
Depth		0.14-0.55	0.06-0.3	0.0-0.2	0.17-0.4
Date Sampled		28/05/2022	28/05/2022	28/05/2022	28/05/2022
Type of sample		Soil	Soil	Soil	Soil
Date analysed	-	02/06/2022	02/06/2022	02/06/2022	02/06/2022
Sample mass tested	g	729.75	612.45	188.85	547.6
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown fine- grained soil & debris	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg			
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected			
ACM >7mm Estimation*	g	_	_	_	_
FA and AF Estimation*	g	_	_	_	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001

vTRH(C6-C10)/BTEXN in Water		
Our Reference		296694-15
Your Reference	UNITS	FR-SPT701
Depth		-
Date Sampled		28/05/2022
Type of sample		Water
Date extracted	-	01/06/2022
Date analysed	-	02/06/2022
TRH C ₆ - C ₉	μg/L	85
TRH C ₆ - C ₁₀	μg/L	85
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	85
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
m+p-xylene	μg/L	<2
o-xylene	μg/L	<1
Naphthalene	μg/L	<1
Surrogate Dibromofluoromethane	%	98
Surrogate toluene-d8	%	97
Surrogate 4-BFB	%	93

svTRH (C10-C40) in Water		
Our Reference		296694-15
Your Reference	UNITS	FR-SPT701
Depth		-
Date Sampled		28/05/2022
Type of sample		Water
Date extracted	-	01/06/2022
Date analysed	-	02/06/2022
TRH C ₁₀ - C ₁₄	μg/L	<50
TRH C ₁₅ - C ₂₈	μg/L	<100
TRH C ₂₉ - C ₃₆	μg/L	<100
Total +ve TRH (C10-C36)	μg/L	<50
TRH >C ₁₀ - C ₁₆	μg/L	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100
Total +ve TRH (>C10-C40)	μg/L	<50
Surrogate o-Terphenyl	%	86

PAHs in Water		
Our Reference		296694-15
Your Reference	UNITS	FR-SPT701
Depth		-
Date Sampled		28/05/2022
Type of sample		Water
Date extracted	-	01/06/2022
Date analysed	-	01/06/2022
Naphthalene	μg/L	<1
Acenaphthylene	μg/L	<1
Acenaphthene	μg/L	<1
Fluorene	μg/L	<1
Phenanthrene	μg/L	<1
Anthracene	μg/L	<1
Fluoranthene	μg/L	<1
Pyrene	μg/L	<1
Benzo(a)anthracene	μg/L	<1
Chrysene	μg/L	<1
Benzo(b,j+k)fluoranthene	μg/L	<2
Benzo(a)pyrene	μg/L	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1
Dibenzo(a,h)anthracene	μg/L	<1
Benzo(g,h,i)perylene	μg/L	<1
Benzo(a)pyrene TEQ	μg/L	<5
Total +ve PAH's	μg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	116

Metals in Water - Dissolved		
Our Reference		296694-15
Your Reference	UNITS	FR-SPT701
Depth		-
Date Sampled		28/05/2022
Type of sample		Water
Date digested	-	01/06/2022
Date analysed	-	02/06/2022
Arsenic - Dissolved	mg/L	<0.05
Cadmium - Dissolved	mg/L	<0.01
Chromium - Dissolved	mg/L	<0.01
Copper - Dissolved	mg/L	0.3
Lead - Dissolved	mg/L	<0.03
Mercury - Dissolved	mg/L	<0.0005
Nickel - Dissolved	mg/L	<0.02
Zinc - Dissolved	mg/L	<0.02

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE #1 Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE #2 The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.

Method ID	Methodology Summary
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" teq="" teqs="" th="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql>
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10).	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	296694-3
Date extracted	-			02/06/2022	1	02/06/2022	02/06/2022		02/06/2022	02/06/2022
Date analysed	-			06/06/2022	1	06/06/2022	06/06/2022		06/06/2022	06/06/2022
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	98	90
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	98	90
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	82	76
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	99	91
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	99	90
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	105	96
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	104	96
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	101	1	95	97	2	99	91

QUALITY CO		Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	296694-3
Date extracted	-			02/06/2022	1	02/06/2022	02/06/2022		02/06/2022	02/06/2022
Date analysed	-			03/06/2022	1	03/06/2022	03/06/2022		03/06/2022	03/06/2022
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	123	108
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	104	96
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	100	106
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	123	108
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	104	96
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	100	106
Surrogate o-Terphenyl	%		Org-020	97	1	84	86	2	87	81

QUAL	ITY CONTRO	L: PAHs	in Soil			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	296694-3
Date extracted	-			02/06/2022	1	02/06/2022	02/06/2022		02/06/2022	02/06/2022
Date analysed	-			02/06/2022	1	02/06/2022	02/06/2022		02/06/2022	02/06/2022
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	92
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	81	91
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	95
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	<0.1	0	90	102
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	<0.1	67	90	96
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	<0.1	0	95	107
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	83	85
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	0.07	<0.05	33	84	86
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	81	1	86	87	1	76	85

QUALITY CONT	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	296694-3	
Date extracted	-			02/06/2022	1	02/06/2022	02/06/2022		02/06/2022	02/06/2022	
Date analysed	-			02/06/2022	1	02/06/2022	02/06/2022		02/06/2022	02/06/2022	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	92	
нсв	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	110	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	103	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	107	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	101	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	103	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	98	
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	100	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	100	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	96	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	76	1	81	83	2	72	79	

QUALITY CONTRO	L: Organoph	osphorus	s Pesticides in Soil			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	296694-3	
Date extracted	-			02/06/2022	1	02/06/2022	02/06/2022		02/06/2022	02/06/2022	
Date analysed	-			02/06/2022	1	02/06/2022	02/06/2022		02/06/2022	02/06/2022	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	106	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	87	95	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	89	95	
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	112	116	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	106	
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	99	
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	92	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	76	1	81	83	2	72	79	

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Recover	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	296694-3
Date extracted	-			02/06/2022	1	02/06/2022	02/06/2022		02/06/2022	02/06/2022
Date analysed	-			02/06/2022	1	02/06/2022	02/06/2022		02/06/2022	02/06/2022
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	87	80
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	76	1	81	83	2	72	79

QUALITY CONTROL: Acid Extractable metals in soil						Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	296694-3
Date prepared	-			02/06/2022	1	02/06/2022	02/06/2022		02/06/2022	02/06/2022
Date analysed	-			03/06/2022	1	03/06/2022	03/06/2022		03/06/2022	03/06/2022
Arsenic	mg/kg	4	Metals-020	<4	1	7	7	0	91	71
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	85	78
Chromium	mg/kg	1	Metals-020	<1	1	8	9	12	90	70
Copper	mg/kg	1	Metals-020	<1	1	26	32	21	92	88
Lead	mg/kg	1	Metals-020	<1	1	7	8	13	88	#
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	101	103
Nickel	mg/kg	1	Metals-020	<1	1	13	15	14	90	#
Zinc	mg/kg	1	Metals-020	<1	1	45	41	9	86	#

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water				Duplicate					Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			01/06/2022	15	01/06/2022	02/06/2022		01/06/2022	
Date analysed	-			02/06/2022	15	02/06/2022	03/06/2022		02/06/2022	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	15	85	85	0	92	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	15	85	85	0	92	
Benzene	μg/L	1	Org-023	<1	15	<1	<1	0	95	
Toluene	μg/L	1	Org-023	<1	15	<1	<1	0	96	
Ethylbenzene	μg/L	1	Org-023	<1	15	<1	<1	0	88	
m+p-xylene	μg/L	2	Org-023	<2	15	<2	<2	0	91	
o-xylene	μg/L	1	Org-023	<1	15	<1	<1	0	93	
Naphthalene	μg/L	1	Org-023	<1	15	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	94	15	98	99	1	99	
Surrogate toluene-d8	%		Org-023	97	15	97	97	0	98	
Surrogate 4-BFB	%		Org-023	95	15	93	94	1	94	

QUALITY CONTROL: svTRH (C10-C40) in Water					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			01/06/2022	15	01/06/2022	01/06/2022		01/06/2022	
Date analysed	-			01/06/2022	15	02/06/2022	02/06/2022		01/06/2022	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	15	<50	<50	0	97	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	15	<100	<100	0	90	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	15	<100	<100	0	109	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	15	<50	<50	0	97	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	15	<100	<100	0	90	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	15	<100	<100	0	109	
Surrogate o-Terphenyl	%		Org-020	87	15	86	90	5	100	

QUAL	ITY CONTROL	: PAHs ir	Water			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			01/06/2022	15	01/06/2022	01/06/2022		01/06/2022	
Date analysed	-			01/06/2022	15	01/06/2022	01/06/2022		01/06/2022	
Naphthalene	μg/L	1	Org-022/025	<1	15	<1	<1	0	95	
Acenaphthylene	μg/L	1	Org-022/025	<1	15	<1	<1	0	[NT]	
Acenaphthene	μg/L	1	Org-022/025	<1	15	<1	<1	0	95	
Fluorene	μg/L	1	Org-022/025	<1	15	<1	<1	0	97	
Phenanthrene	μg/L	1	Org-022/025	<1	15	<1	<1	0	106	
Anthracene	μg/L	1	Org-022/025	<1	15	<1	<1	0	[NT]	
Fluoranthene	μg/L	1	Org-022/025	<1	15	<1	<1	0	102	
Pyrene	μg/L	1	Org-022/025	<1	15	<1	<1	0	107	
Benzo(a)anthracene	μg/L	1	Org-022/025	<1	15	<1	<1	0	[NT]	
Chrysene	μg/L	1	Org-022/025	<1	15	<1	<1	0	97	
Benzo(b,j+k)fluoranthene	μg/L	2	Org-022/025	<2	15	<2	<2	0	[NT]	
Benzo(a)pyrene	μg/L	1	Org-022/025	<1	15	<1	<1	0	102	
Indeno(1,2,3-c,d)pyrene	μg/L	1	Org-022/025	<1	15	<1	<1	0	[NT]	
Dibenzo(a,h)anthracene	μg/L	1	Org-022/025	<1	15	<1	<1	0	[NT]	
Benzo(g,h,i)perylene	μg/L	1	Org-022/025	<1	15	<1	<1	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	95	15	116	107	8	91	

QUALITY CONTROL: Metals in Water - Dissolved					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			01/06/2022	[NT]		[NT]	[NT]	01/06/2022	
Date analysed	-			02/06/2022	[NT]		[NT]	[NT]	02/06/2022	
Arsenic - Dissolved	mg/L	0.05	Metals-020	<0.05	[NT]		[NT]	[NT]	114	
Cadmium - Dissolved	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	108	
Chromium - Dissolved	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	109	
Copper - Dissolved	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	108	
Lead - Dissolved	mg/L	0.03	Metals-020	<0.03	[NT]		[NT]	[NT]	109	
Mercury - Dissolved	mg/L	0.0005	Metals-021	<0.0005	[NT]		[NT]	[NT]	114	
Nickel - Dissolved	mg/L	0.02	Metals-020	<0.02	[NT]		[NT]	[NT]	110	
Zinc - Dissolved	mg/L	0.02	Metals-020	<0.02	[NT]		[NT]	[NT]	113	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 296694

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 296694 Page | 30 of 31

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

8 metals in soil - # Percent recovery is not possible to report due to the inhomogeneous nature of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Envirolab Reference: 296694 Page | 31 of 31

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Harry Leonard

Sample Login Details	
Your reference	E33780PL, Kingswood
Envirolab Reference	296694
Date Sample Received	30/05/2022
Date Instructions Received	30/05/2022
Date Results Expected to be Reported	06/06/2022

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	14 Soil, 1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	7
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au

www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHsin Water	Metals in Water - Dissolved	On Hold
BH701-0.14-0.55	✓	✓	✓	✓	✓	✓	✓	✓					
BH701-0.55-0.9	✓	✓	✓				✓						
BH702-0.06-0.3	✓	✓	✓	✓	✓	✓	✓	✓					
BH702-0.5-0.7													✓
BH703-0.0-0.2	✓	✓	✓	✓	✓	✓	✓	✓					
BH703-0.2-0.5	✓	✓	✓				✓						
BH703-0.5-0.7													✓
BH704-0.17-0.4	✓	✓	✓	✓	✓	✓	✓	✓					
BH704-1.0-1.2													✓
BH704-1.5-1.7	✓	✓	✓				✓						
TB-S701	✓	✓	✓				✓						
TS-S701	✓												
SDUP701	✓	✓	✓	✓	✓	✓	✓						
-													✓
FR-SPT701									✓	✓	✓	✓	

The 'V' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE AND CHAIN OF CUSTODY FORM TO: FROM: ENVIROLAB SERVICES PTY LTD JKE Job E33780PL 12 ASHLEY STREET Number: **JK**Environments CHATSWOOD NSW 2067 P: (02) 99106200 **Date Results** STANDARD **REAR OF 115 WICKS ROAD** F: {02) 99106201 Required: MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention: Aileen Page: 1 of 1 Attention: Harry Leonard hleonard@ikenvironments.com.au Location: Kingswood Sample Preserved in Esky on Ice Sampler: AM **Tests Required** Asbestos (WA 500ml method) Sample Container Combo 3 Combo 6 Date Lab Sample BTEX Depth (m) PID Sampled Ref: Number F: Silty Gravelly 28/05/2022 BH701 0.14 - 0.55 G, A 0.0Clay 2 28/05/2022 BH701 0.55 - 0.9 G 0.0 Silty Clay 3 28/05/2022 BH702 F: Silty Clay 0.06 - 0.3G, A 0.0 28/05/2022 ١x BH702 0.5 - 0.70.0 G Silty Clay 28/05/2022 BH703 0.0 - 0.2G, A 0.0 F: Clayey Silt 28/05/2022 BH703 0.2 - 0.5 0.0 G, A Silty Clay 28/05/2022 BH703 0.5 - 0.7G 0.0 Silty Clay 6 F: Silty Gravelly 28/05/2022 BH704 0.17 - 0.4 G, A 0.0 Clay F: Silty Gravelly 28/05/2022 BH704 1.0 - 1.2 G, A 0.0 Clay 28/05/2022 BH704 1.5 - 1.7 G 0.0 Slity Clay 28/05/2022 TB-S701 G, A Soil Trip Blank 28/05/2022 TS-\$701 G, A Soil Trip Spike 28/05/2022 SDUP701 G 0.0 Soil DUP 28/05/2022 W# SDUP702 G 0.0 Soil DUP 2 x G1. 3 x 28/05/2022 FR-SPT701 Field Rinsate V, 1 x HN03 Envirolab St. 12 Ashley S Chaswood NSW 2087 Ph: (02) 99 0 6200 66 9L Job No: 30/51 Date Received: Time Received: 12 Temp:(Cop)Ambient Cooling Security: Intact/Broken/None Remarks (comments/detection limits required): Sample Containers: SDUP701 - Intra-laboratory duplicate # SDUP702 - Inter-laboratory duplicate (Melb) G - 250mg Glass Jar G1-125mL Amber Glass Bottle V - BTEX Vial H - HNO3 Wash PVC Relinquished By: EW Date: 30/05/2022 Time: Received By: Date: 1210

Envirolab Services Pty Ltd ABN 37 112 535 645

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 297282

Client Details	
Client	JK Environments
Attention	Harry Leonard
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E33780PL, Kingswood
Number of Samples	10 Soil
Date samples received	06/06/2022
Date completed instructions received	06/06/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details				
Date results requested by	14/06/2022			
Date of Issue	14/06/2022			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC	17025 - Testing. Tests not covered by NATA are denoted with *			

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Nyovan Moonean Authorised by Asbestos Approved Signatory: Matt Mansfield

Results Approved By

Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager Josh Williams, Organics and LC Supervisor Kyle Gavrily, Senior Chemist Matt Mansfield, QHSE manager **Authorised By**

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		297282-1	297282-3	297282-5	297282-6	297282-9
Your Reference	UNITS	BH705	BH706	BH706	BH707	TS-T1
Depth		0.14-0.2	0-0.2	0.45-0.65	0-0.2	-
Date Sampled		4/06/2022	4/06/2022	4/06/2022	4/06/2022	4/06/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	08/06/2022	08/06/2022	08/06/2022	08/06/2022	08/06/2022
Date analysed	-	09/06/2022	09/06/2022	09/06/2022	09/06/2022	09/06/2022
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	[NA]
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	[NA]
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	[NA]
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	97%
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	98%
Ethylbenzene	mg/kg	<1	<1	<1	<1	99%
m+p-xylene	mg/kg	<2	<2	<2	<2	96%
o-Xylene	mg/kg	<1	<1	<1	<1	97%
Naphthalene	mg/kg	<1	<1	<1	<1	[NA]
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	[NA]
Surrogate aaa-Trifluorotoluene	%	87	85	82	85	104

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		297282-10
Your Reference	UNITS	TB-S1
Depth		-
Date Sampled		4/06/2022
Type of sample		Soil
Date extracted	-	08/06/2022
Date analysed	-	09/06/2022
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	116

svTRH (C10-C40) in Soil					
Our Reference		297282-1	297282-3	297282-5	297282-6
Your Reference	UNITS	BH705	BH706	BH706	BH707
Depth		0.14-0.2	0-0.2	0.45-0.65	0-0.2
Date Sampled		4/06/2022	4/06/2022	4/06/2022	4/06/2022
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	08/06/2022	08/06/2022	08/06/2022	08/06/2022
Date analysed	-	08/06/2022	08/06/2022	08/06/2022	08/06/2022
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	110	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	110	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	120	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	120	<50	<50
Surrogate o-Terphenyl	%	80	85	82	80

PAHs in Soil					
Our Reference		297282-1	297282-3	297282-5	297282-6
Your Reference	UNITS	BH705	BH706	BH706	BH707
Depth		0.14-0.2	0-0.2	0.45-0.65	0-0.2
Date Sampled		4/06/2022	4/06/2022	4/06/2022	4/06/2022
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	08/06/2022	08/06/2022	08/06/2022	08/06/2022
Date analysed	-	08/06/2022	08/06/2022	08/06/2022	08/06/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	83	85	85	84

Organochlorine Pesticides in soil				
Our Reference		297282-1	297282-3	297282-6
Your Reference	UNITS	BH705	BH706	BH707
Depth		0.14-0.2	0-0.2	0-0.2
Date Sampled		4/06/2022	4/06/2022	4/06/2022
Type of sample		Soil	Soil	Soil
Date extracted	-	08/06/2022	08/06/2022	08/06/2022
Date analysed	-	08/06/2022	08/06/2022	08/06/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.8	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	4.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	1.5	<0.1	<0.1
alpha-chlordane	mg/kg	0.2	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	1.8	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	87	94	86

Organophosphorus Pesticides in Soil				
Our Reference		297282-1	297282-3	297282-6
Your Reference	UNITS	BH705	BH706	BH707
Depth		0.14-0.2	0-0.2	0-0.2
Date Sampled		4/06/2022	4/06/2022	4/06/2022
Type of sample		Soil	Soil	Soil
Date extracted	-	08/06/2022	08/06/2022	08/06/2022
Date analysed	-	08/06/2022	08/06/2022	08/06/2022
Dichlorvos	mg/kg	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	87	94	86

PCBs in Soil				
Our Reference		297282-1	297282-3	297282-6
Your Reference	UNITS	BH705	BH706	BH707
Depth		0.14-0.2	0-0.2	0-0.2
Date Sampled		4/06/2022	4/06/2022	4/06/2022
Type of sample		Soil	Soil	Soil
Date extracted	-	08/06/2022	08/06/2022	08/06/2022
Date analysed	-	08/06/2022	08/06/2022	08/06/2022
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	87	94	86

Envirolab Reference: 297282

Acid Extractable metals in soil					
Our Reference		297282-1	297282-3	297282-5	297282-6
Your Reference	UNITS	BH705	BH706	BH706	BH707
Depth		0.14-0.2	0-0.2	0.45-0.65	0-0.2
Date Sampled		4/06/2022	4/06/2022	4/06/2022	4/06/2022
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	08/06/2022	08/06/2022	08/06/2022	08/06/2022
Date analysed	-	10/06/2022	10/06/2022	10/06/2022	10/06/2022
Arsenic	mg/kg	<4	5	<4	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	25	11	7	13
Copper	mg/kg	13	22	13	20
Lead	mg/kg	4	15	6	16
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	37	9	10	8
Zinc	mg/kg	23	52	25	54

Moisture					
Our Reference		297282-1	297282-3	297282-5	297282-6
Your Reference	UNITS	BH705	BH706	BH706	BH707
Depth		0.14-0.2	0-0.2	0.45-0.65	0-0.2
Date Sampled		4/06/2022	4/06/2022	4/06/2022	4/06/2022
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	08/06/2022	08/06/2022	08/06/2022	08/06/2022
Date analysed	-	09/06/2022	09/06/2022	09/06/2022	09/06/2022
Moisture	%	15	4.4	18	12

Asbestos ID - soils NEPM - ASB-001				
Our Reference		297282-1	297282-3	297282-6
Your Reference	UNITS	BH705	BH706	BH707
Depth		0.14-0.2	0-0.2	0-0.2
Date Sampled		4/06/2022	4/06/2022	4/06/2022
Type of sample		Soil	Soil	Soil
Date analysed	-	14/06/2022	14/06/2022	14/06/2022
Sample mass tested	g	796.69	736.2	706.92
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown clayey soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	_	-	_
FA and AF Estimation*	g	_	_	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE #1 Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE #2 The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.

Method ID	Methodology Summary
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" conserved="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-poi="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" td="" teq="" teqs="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a surfict of the positive individual Xylenes.

QUALITY CON	Duplicate					Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	297282-3
Date extracted	-			08/06/2022	1	08/06/2022	08/06/2022		08/06/2022	08/06/2022
Date analysed	-			09/06/2022	1	09/06/2022	09/06/2022		09/06/2022	09/06/2022
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	92	85
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	92	85
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	82	75
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	92	84
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	95	87
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	96	89
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	97	90
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	81	1	87	86	1	93	83

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	297282-3
Date extracted	-			08/06/2022	1	08/06/2022	08/06/2022		08/06/2022	08/06/2022
Date analysed	-			08/06/2022	1	08/06/2022	08/06/2022		08/06/2022	08/06/2022
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	120	116
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	98	102
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	83	#
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	120	116
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	98	102
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	83	#
Surrogate o-Terphenyl	%		Org-020	83	1	80	89	11	90	90

QUA	LITY CONTRO	L: PAHs	in Soil			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	297282-3	
Date extracted	-			08/06/2022	1	08/06/2022	08/06/2022		08/06/2022	08/06/2022	
Date analysed	-			08/06/2022	1	08/06/2022	08/06/2022		08/06/2022	08/06/2022	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	86	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	87	89	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	92	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	90	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	86	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	85	91	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	83	83	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0		[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	<0.05	0	96	100	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	87	1	83	84	1	81	88	

QUALITY CC	NTROL: Organo	chlorine F	Pesticides in soil			Du	Duplicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	297282-3
Date extracted	-			08/06/2022	1	08/06/2022	08/06/2022		08/06/2022	08/06/2022
Date analysed	-			08/06/2022	1	08/06/2022	08/06/2022		08/06/2022	08/06/2022
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	82	86
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	82	89
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	0.8	0.9	12	89	97
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	4.1	4.2	2	91	95
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	92
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	1.5	1.6	6	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.2	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	90
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	1.8	1.8	0	88	94
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	98
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	102
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	100
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	92	1	87	94	8	86	84

QUALITY CONTI	ROL: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	297282-3		
Date extracted	-			08/06/2022	1	08/06/2022	08/06/2022		08/06/2022	08/06/2022		
Date analysed	-			08/06/2022	1	08/06/2022	08/06/2022		08/06/2022	08/06/2022		
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	112		
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	101		
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	99	121		
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	120	124		
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	100		
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	119		
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	129		
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Surrogate TCMX	%		Org-022/025	92	1	87	94	8	86	84		

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	297282-3
Date extracted	-			08/06/2022	1	08/06/2022	08/06/2022		08/06/2022	08/06/2022
Date analysed	-			08/06/2022	1	08/06/2022	08/06/2022		08/06/2022	08/06/2022
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	92	80
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	92	1	87	94	8	86	84

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	297282-3
Date prepared	-			08/06/2022	1	08/06/2022	08/06/2022		08/06/2022	08/06/2022
Date analysed	-			10/06/2022	1	10/06/2022	10/06/2022		10/06/2022	10/06/2022
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	102	89
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	100	77
Chromium	mg/kg	1	Metals-020	<1	1	25	24	4	105	85
Copper	mg/kg	1	Metals-020	<1	1	13	14	7	100	104
Lead	mg/kg	1	Metals-020	<1	1	4	4	0	105	77
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	97	123
Nickel	mg/kg	1	Metals-020	<1	1	37	38	3	103	83
Zinc	mg/kg	1	Metals-020	<1	1	23	28	20	105	106

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 297282

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Page | 21 of 22

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

TRH Soil C10-C40 NEPM - # Percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 297282-3ms have caused interference.

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Envirolab Reference: 297282 Page | 22 of 22 Revision No: R00

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Harry Leonard

Sample Login Details		
Your reference	E33780PL, Kingswood	
Envirolab Reference	297282	
Date Sample Received	06/06/2022	
Date Instructions Received	06/06/2022	
Date Results Expected to be Reported	14/06/2022	

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	10 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	18
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst								
Phone: 02 9910 6200	Phone: 02 9910 6200								
Fax: 02 9910 6201	Fax: 02 9910 6201								
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au								

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067

ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	On Hold
BH705-0.14-0.2	✓	✓	✓	✓	✓	✓	✓	✓	
BH705-0.3-0.33									✓
BH706-0-0.2	✓	✓	✓	✓	✓	✓	✓	✓	
BH706-0.3-0.45									✓
BH706-0.45-0.65	✓	✓	✓				✓		
BH707-0-0.2	✓	✓	✓	✓	✓	✓	✓	✓	
BH707-0.3-0.5									✓
BH707-0.5-0.7									✓
TS-T1	✓								
TB-S1	✓								

The 'V' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE AND CHAIN OF CUSTODY FORM

TO: ENVIROLAB SERVICES PTY LTD 12 ASHLEY STREET CHATSWOOD NSW 2067 P: {02} 99106200 F: {02} 99106201			JKE Job Number:		E33780PL STANDARD			JKEnvironments REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001										
Attention: Aileen			Page: 1 of 1]				Atten	tion: [ard@]	konvie			eonard	<u> </u>		
Location: Kingswood												eserve				m.au		
Sampler:	HL			· · · · · · · · · · · · · · · · · · ·							Te	sts Re	quire	d				
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Cambo 6	Сотро 3	Asbestos (WA 500ml method)	втех								
4/06/2022	1	вн705	0.14-0.2	G, A	0	Fill: Sandy gravelly clay	х		х									
4/06/2022	2	BH705	0.3-0.33	G	0	Claystone												
4/06/2022	3	BH706	0-0.2	G, A	0	F: Silty gravelly clay	x		×									
4/06/2022	4	вн706	0.3-0.45	G, A	0	F: Silty clay												
4/06/2022	5	BH706	0.45-0.65	G	0	Silty clay		х										
4/06/2022	6	BH707	0-0.2	G, A	0	F: Silty clay	х		х									
4/06/2022	7	BH707	0.3-0.5	G, A	0	F: Silty clay												
4/06/2022	ধ্	BH707	0.5-0.7	G	0	Silty clay												
4/06/2022	9	TS-S1	_	G	1	Spike				х								
4/06/2022	10	TB-S1	_	G	-	Blank				х								
												4.						
						<u> </u>	<u> </u>											
				<u></u>										_				
	,								<u> </u>					1				
	<u> </u>										<u> </u>	B -		12	të/hru	787		
										j		B C			910 (200		
				<u> </u>						_		: 3	_		28	2_		<u> </u>
		<u> </u>			ļ			_	<u> </u>	E.	ie Re	ceive ceive	d:6	6	22			
				ļ			_			<u>r</u>	Me	1.By:	AD)	·es	<u> </u>			
	_			 		<u> </u>	_			TE Cir	nπiō Duniō	00]/A	mbie	nt _	<u> </u>			
				<u> </u>			ļ.	<u> </u>		``	.uri*(n -			
				<u> </u>					_									
		<u> </u>	<u></u>	<u></u>		<u> </u>	ļ.	<u> </u>	<u> </u>									<u> </u>
Remarks (comments/detection limits required):				Sample Containers: G - 250mg Glass Jar A - Ziplock Asbestos Bag P - Plastic Bag														
Relinquished By: HL			Date: 06/06/2022			Time:				Received By: AV - DS SYD G-6.22								

Envirolab Services Pty Ltd

ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 31757

Client Details	
Client	JK Environments
Attention	Harry Leonard
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E33780PL
Number of Samples	1 Soil
Date samples received	01/06/2022
Date completed instructions received	01/06/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	08/06/2022
Date of Issue	08/06/2022
NATA Accreditation Number 2901. T	his document shall not be reproduced except in full.
Accredited for compliance with ISO/II	EC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Chris De Luca, Operations Manager

Authorised By

Pamela Adams, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		31757-1
Your Reference	UNITS	SDUP702
Date Sampled		28/05/2022
Type of sample		Soil
Date extracted	-	06/06/2022
Date analysed	-	06/06/2022
vTRH C ₆ - C ₉	mg/kg	<25
vTRH C ₆ - C ₁₀	mg/kg	<25
TRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Total BTEX	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	103

TRH Soil C10-C40 NEPM		
Our Reference		31757-1
Your Reference	UNITS	SDUP702
Date Sampled		28/05/2022
Type of sample		Soil
Date extracted	-	06/06/2022
Date analysed	-	07/06/2022
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
Total +ve TRH (C10-C36)	mg/kg	<50
TRH >C10 -C16	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	82

PAHs in Soil		
Our Reference		31757-1
Your Reference	UNITS	SDUP702
Date Sampled		28/05/2022
Type of sample		Soil
Date extracted	-	06/06/2022
Date analysed	-	07/06/2022
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j&k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc (Half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc (PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d ₁₄	%	98

OCP in Soil		
Our Reference		31757-1
Your Reference	UNITS	SDUP702
Date Sampled		28/05/2022
Type of sample		Soil
Date extracted	-	06/06/2022
Date analysed	-	07/06/2022
alpha-BHC	mg/kg	<0.1
Hexachlorobenzene	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve reported Aldrin + Dieldrin	mg/kg	<0.1
Total +ve reported DDT+DDD+DDE	mg/kg	<0.1
Surrogate 2-chlorophenol-d4	%	82

OP in Soil		
Our Reference		31757-1
Your Reference	UNITS	SDUP702
Date Sampled		28/05/2022
Type of sample		Soil
Date extracted	-	06/06/2022
Date analysed	-	07/06/2022
Azinphos-methyl	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Chlorpyrifos	mg/kg	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Dichlorovos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Ethion	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Parathion	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Surrogate 2-chlorophenol-d4	%	82

PCBs in Soil		
Our Reference		31757-1
Your Reference	UNITS	SDUP702
Date Sampled		28/05/2022
Type of sample		Soil
Date extracted	-	06/06/2022
Date analysed	-	07/06/2022
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate 2-fluorobiphenyl	%	92

Acid Extractable metals in soil		
Our Reference		31757-1
Your Reference	UNITS	SDUP702
Date Sampled		28/05/2022
Type of sample		Soil
Date digested	-	06/06/2022
Date analysed	-	07/06/2022
Arsenic	mg/kg	5
Cadmium	mg/kg	<0.4
Chromium	mg/kg	13
Copper	mg/kg	24
Lead	mg/kg	9
Mercury	mg/kg	<0.1
Nickel	mg/kg	11
Zinc	mg/kg	25

Moisture		
Our Reference		31757-1
Your Reference	UNITS	SDUP702
Date Sampled		28/05/2022
Type of sample		Soil
Date prepared	-	06/06/2022
Date analysed	-	07/06/2022
Moisture	%	19

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105°C for a minimum of 12 hours.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021/022	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD or GC-MS.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-022	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
	Note, For OCs the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:-
	1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" td="" teq="" teqs="" that="" the="" therefore"="" this="" to="" total="" when="" zero'values="" zero.=""></pql>
Org-022	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT		Duplicate Spike Reco			covery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			06/06/2022	[NT]		[NT]	[NT]	06/06/2022	
Date analysed	-			06/06/2022	[NT]		[NT]	[NT]	06/06/2022	
vTRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	85	
vTRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	85	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	89	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	90	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	79	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	84	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	83	
Naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	111	[NT]		[NT]	[NT]	101	

QUALITY CON	NTROL: TRH	Soil C10	C40 NEPM			Du	Duplicate Spike Recove			covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			06/06/2022	[NT]		[NT]	[NT]	06/06/2022	
Date analysed	-			07/06/2022	[NT]		[NT]	[NT]	07/06/2022	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	88	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	85	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	107	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	88	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	85	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	107	
Surrogate o-Terphenyl	%		Org-020	81	[NT]		[NT]	[NT]	78	

QUA	LITY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			06/06/2022	[NT]		[NT]	[NT]	06/06/2022		
Date analysed	-			07/06/2022	[NT]		[NT]	[NT]	07/06/2022		
Naphthalene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	94		
Acenaphthylene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Acenaphthene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	98		
Fluorene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	100		
Phenanthrene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	102		
Anthracene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluoranthene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	100		
Pyrene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	106		
Benzo(a)anthracene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Chrysene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	96		
Benzo(b,j&k)fluoranthene	mg/kg	0.2	Org-022	<0.2	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene	mg/kg	0.05	Org-022	<0.05	[NT]		[NT]	[NT]	106		
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d ₁₄	%		Org-022	96	[NT]		[NT]	[NT]	96		

QUA	LITY CONTRO	DL: OCP i	n Soil			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			06/06/2022	[NT]		[NT]	[NT]	06/06/2022		
Date analysed	-			07/06/2022	[NT]		[NT]	[NT]	07/06/2022		
alpha-BHC	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	94		
Hexachlorobenzene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
beta-BHC	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	88		
gamma-BHC	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Heptachlor	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	96		
delta-BHC	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Aldrin	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	94		
Heptachlor Epoxide	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	90		
gamma-Chlordane	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	94		
alpha-chlordane	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDE	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	104		
Dieldrin	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	98		
Endrin	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan II	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDD	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	100		
Endrin Aldehyde	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDT	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	98		
Methoxychlor	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate 2-chlorophenol-d4	%		Org-022	84	[NT]		[NT]	[NT]	88		

QUA	LITY CONTR	OL: OP ir	Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	31757-1
Date extracted	-			06/06/2022	1	06/06/2022	06/06/2022		06/06/2022	06/06/2022
Date analysed	-			07/06/2022	1	07/06/2022	07/06/2022		07/06/2022	07/06/2022
Azinphos-methyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyrifos	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	88	93
Chlorpyrifos-methyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	88	90
Diazinon	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	90	90
Dichlorovos	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	90	98
Fenitrothion	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	76	82
Malathion	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate 2-chlorophenol-d4	%		Org-022	84	1	82	78	5	88	82

QUALIT	Y CONTRO	L: PCBs	in Soil			Duplicate Spike Re			Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			06/06/2022	[NT]		[NT]	[NT]	06/06/2022	
Date analysed	-			07/06/2022	[NT]		[NT]	[NT]	07/06/2022	
Aroclor 1016	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	90	
Aroclor 1260	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate 2-fluorobiphenyl	%		Org-022	88	[NT]	[NT]	[NT]	[NT]	102	[NT]

QUALITY CONT	ROL: Acid E	xtractab	le metals in soil			Duplicate Spike Recov				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date digested	-			06/06/2022	[NT]		[NT]	[NT]	06/06/2022	
Date analysed	-			07/06/2022	[NT]		[NT]	[NT]	07/06/2022	
Arsenic	mg/kg	4	Metals-020 ICP- AES	<4	[NT]		[NT]	[NT]	102	
Cadmium	mg/kg	0.4	Metals-020 ICP- AES	<0.4	[NT]		[NT]	[NT]	103	
Chromium	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	104	
Copper	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	102	
Lead	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	102	
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]		[NT]	[NT]	96	
Nickel	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	102	
Zinc	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	100	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 31757 Page | 20 of 20

Revision No: R00

Envirolab Services Pty Ltd

ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Harry Leonard

Sample Login Details		
Your reference	E33780PL	
Envirolab Reference	31757	
Date Sample Received	01/06/2022	
Date Instructions Received	01/06/2022	
Date Results Expected to be Reported	08/06/2022	

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	8.8
Cooling Method	Icepack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Pamela Adams	Chris De Luca
Phone: 03 9763 2500	Phone: 03 9763 2500
Fax: 03 9763 2633	Fax: 03 9763 2633
Email: padams@envirolab.com.au	Email: cdeluca@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645 - 002
25 Research Drive Croydon South VIC 3136
ph 03 9763 2500 fax 03 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	TRH Soil C10-C40 NEPM	PAHs in Soil	OCP in Soil	OP in Soil	PCBsin Soil	Acid Extractable metalsin soil
SDUP702	✓	✓	✓	✓	✓	✓	✓

The '\sqrt{'} indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

				SAMPL	E AND	CHAIN OF	CUS	TOE	Y F	ORN	Л		-					
TO: ENVIROLAB : 12 ASHLEY ST CHATSWOOD	TREET			JKE Job Number:		E33780PL		J				<u>Ом:</u>		S	viro			4e
P: (02) 99106 F: (02) 99106	6200	2007		Date Result Required:	ts	STANDARD					MA	NR OF	115 W	/ICKS I ARK, N	ROAD ISW 21	113		
Attention: Ai	ileen			Page:		1 of 1						: 02-9888 5000 F: 02-9888 5001 ttention:						
Location:	Kings	wood		ا م			$\overline{\mathbf{T}}$			Sa	mnje i				vironm on Ice		:om.au	<u>u</u>
Sampler:	AM		*	* ******			+						Requi		On ILE			
Date Sampled	Lab Ref:		Depth (m)	Sample Container	PID	Sample Description	Combo 6	Combo 3	Asbestos (WA	SUUMI Method) BTEX			Nequ.					-
28/05/2022	 `	BH701	0.14 - 0.55	G, A	0.0	F: Silty Gravelly Clay	/ x	T	x			\dagger		 			\dagger	+-
28/05/2022	-	BH701	0.55 - 0.9	G	0.0	Silty Clay		x	1	T	1	·	1	\top	†	 	+	\dagger
28/05/2022	3	BH702	0.06 - 0.3	G, A '	0.0	F: Silty Clay	х	T	х	1	\top	1	1	1-	+	\vdash	+-	+-
28/05/2022	 ``	BH702	0.5 - 0.7	Ġ	0.0	Silty Clay		†_			1		<u> </u>	1	1 -		†	†
28/05/2022	 	BH703	0.0 - 0.2	G, A	0.0	F: Clayey Silt	х		х		1			1	1		1	†
28/05/2022	_0	ВН703	0.2 - 0.5	G, A	0.0	Silty Clay	1	х				1.	\top	1	_			1-
28/05/2022	7	BH703	0.5 - 0.7	G	0.0	Silty Clay				1	 	Ť	T		_	† –	†	\top
28/05/2022	8	BH704	0.17 - 0.4	G, A	0.0	F: Silty Gravelly Clay	x		x	٠				1	1		t^-	T
28/05/2022	d	BH704	1.0 - 1.2	G, A	0.0	F: Silty Gravelly Clay			<u> </u>	-			-	-	 		+-	+
28/05/2022	0	BH704	1.5 - 1.7	G 🗻	0.0	Silty Clay		- X-				1.	\dagger	1	 -	 	-	
28/05/2022	1	TB-S701	-	G, A	-	Soil Trip Blank	f –	x			<u> </u>		T	1		\dagger	†	\vdash
28/05/2022	1	TS-S701	=	G, A		Soil Trip Spike	Ī			x	1		1				† –	†
28/05/2022	<u>তে</u>	SDUP701	-	G	0.0	Soil DUP	х	†					1	† <u> </u>			\vdash	
28/05/2022	(K#	SDUP702	-	G	0.0	Soil DUP	х	7			1							-
28/05/2022	40	FR-SPT701	-	2 x G1, 3 x V, 1 x HN03	-	Field Rinsate		x							_		 -	+ ·
<u>:</u>		n nices		<u>-</u>			,			<u> </u>	j.					. "		
	0.00	Services rch Drive								THÂT H	<u></u>		1	аь 50 2 As	hiey S			\vdash
Croydo	Souti (03)	9/63 2500					5	<u> </u>		TO IN	7	Ch	h: (t	A NS	₩ 206 0 5 20	7 -	-	† <u>-</u> -
12: 5	ب									Job	NO:	29		94				
3147	6/2	.7 = 0M	,							Date	Rece		20	15	20	2	-	
	2:3	۲۲۰								Time	Rece	ived:	12	\wp	, 7	_		
eive M	ent	8.80		· .						Tem	p:(Co	JI /Aπ Ω	bient	01	<u> </u>	, 		
aina: Ice/ICI/	ack Broken	٠								Coo	ing(i vity;	belice	Back	-	me			
ounty: (Nize)									-	Sec	inty:	HILDU	10,00		· -			
													(
DUP701 - Intra	a-labora	detection limit atory duplicat oratory duplica	te			[,	G - 25	le Con	ilass J	ar				ıber G	lass Bo	ttle		
elinquished By			ı	Date: 30/05/2	2022		V - BTI Time:	EX Via	1	H - HI	NO3 W					Dáte		
ild sydr	Res						12	Ó)۔	}		A		-			30/	512	2

Chosenan 31/05/22

1120

EUNI

<u>Job</u>

Dat Tin Re Tel

Login

From:

Poonam RAJ <poonam1679@hotmail.com>

Sent:

Tuesday, 31 May 2022 8:18 AM

To:

Login

Subject:

Fwd: morning

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Get Outlook for Android

From: Geoff Weir < GWeir@envirolab.com.au>
Sent: Tuesday, May 31, 2022 7:40:35 AM
To: Poonam RAJ < poonam1679@hotmail.com>

Subject: morning

296694 - #14 to Melbourne pls

Kind Regards,

Geoff Weir | Senior Customer Service & Purchasing | Envirolab Services

Great Science. Great Service.

12 Ashley Street Chatswood NSW 2067 T 612 9910 6200 E <u>GWeir@envirolab.com.au</u> | W www.envirolab.com.au

Contaminated Land ● Trade Waste ● OHS ● Drinking Water ● Air Quality ● Asbestos □

Methamphetamines & Other Drug Residue ● Acid Sutphate Sc

Emerging Contaminants ● Forer

Pelingushed by Christme. Gritp
31100122 1120 /6

Related Parties

ALABTEC

AU: 1300 424 344

Sydney | Perth | Melbourne | Adelaide | Brisbane | Darwin

Follow us on: LinkedIn | Facebook | Twitter

Latest Update: Our Melbourne lab's NATA accredited for EDTA in soil and water matrices & compliant with EPA Victor

Please consider the environment before printing this email.

Samples will be analysed per our T&C's.

The content of this email and any attachments are intended solely for the addressee(s), may contain confidential and/or privileged information and may be use is expressly prohibited. If you have received this email in error please promptly notify the sender, disregard and then delete the email. Any views expresender. This email may have been corrupted or interfered with. Envirolab Group Pty Ltd cannot guarantee that the message you receive is the same as the warrant or guarantee that the communication is free from errors, virus or interference. In the event of any discrepancy between paper and electronic versigroup accepts no liability for any damage caused by this email or its attachments due to viruses, interference, interception, corruption or unauthorised resending this email.

This e-mail message has been scanned for Viruses

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 297295

Client Details	
Client	JK Environments
Attention	Harry Leonard
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E33780PL, Kingswood
Number of Samples	6 Water
Date samples received	06/06/2022
Date completed instructions received	06/06/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details							
Date results requested by	14/06/2022						
Date of Issue	21/06/2022						
Reissue Details	This report replaces R00 created on 14/06/2022 due to: sample ID error						
NATA Accreditation Number 2901. This document shall not be reproduced except in full.							
Accredited for compliance with ISO/IEC	Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By

Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager Josh Williams, Organics and LC Supervisor Kyle Gavrily, Senior Chemist Thomas Lovatt, Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

VOCs in water					
Our Reference		297295-1	297295-2	297295-3	297295-4
Your Reference	UNITS	MW601	MW603	MW701	WDUP601
Date Sampled		06/06/2022	06/06/2022	06/06/2022	06/06/2022
Type of sample		Water	Water	Water	Water
Date extracted	-	09/06/2022	09/06/2022	09/06/2022	09/06/2022
Date analysed	-	10/06/2022	10/06/2022	10/06/2022	10/06/2022
Dichlorodifluoromethane	μg/L	<10	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10	<10
Vinyl Chloride	μg/L	<10	<10	<10	<10
Bromomethane	μg/L	<10	<10	<10	<10
Chloroethane	μg/L	<10	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10	<10
1,1-Dichloroethene	μg/L	<1	<1	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1	<1	<1
1,1-dichloroethane	μg/L	<1	<1	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1	<1	<1
Bromochloromethane	μg/L	<1	<1	<1	<1
Chloroform	μg/L	<1	<1	<1	<1
2,2-dichloropropane	μg/L	<1	<1	<1	<1
1,2-dichloroethane	μg/L	<1	<1	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1	<1	<1
1,1-dichloropropene	μg/L	<1	<1	<1	<1
Cyclohexane	μg/L	<1	<1	<1	<1
Carbon tetrachloride	μg/L	<1	<1	<1	<1
Benzene	μg/L	<1	<1	<1	<1
Dibromomethane	μg/L	<1	<1	<1	<1
1,2-dichloropropane	µg/L	<1	<1	<1	<1
Trichloroethene	μg/L	<1	<1	<1	<1
Bromodichloromethane	μg/L	<1	<1	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1
1,3-dichloropropane	μg/L	<1	<1	<1	<1
Dibromochloromethane	μg/L	<1	<1	<1	<1
1,2-dibromoethane	μg/L	<1	<1	<1	<1
Tetrachloroethene	μg/L	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1	<1	<1
Chlorobenzene	μg/L	<1	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	<1

VOCs in water					
Our Reference		297295-1	297295-2	297295-3	297295-4
Your Reference	UNITS	MW601	MW603	MW701	WDUP601
Date Sampled		06/06/2022	06/06/2022	06/06/2022	06/06/2022
Type of sample		Water	Water	Water	Water
Bromoform	μg/L	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2
Styrene	μg/L	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1	<1	<1
o-xylene	μg/L	<1	<1	<1	<1
1,2,3-trichloropropane	μg/L	<1	<1	<1	<1
Isopropylbenzene	μg/L	<1	<1	<1	<1
Bromobenzene	μg/L	<1	<1	<1	<1
n-propyl benzene	μg/L	<1	<1	<1	<1
2-chlorotoluene	μg/L	<1	<1	<1	<1
4-chlorotoluene	μg/L	<1	<1	<1	<1
1,3,5-trimethyl benzene	μg/L	<1	<1	<1	<1
Tert-butyl benzene	μg/L	<1	<1	<1	<1
1,2,4-trimethyl benzene	μg/L	<1	<1	<1	<1
1,3-dichlorobenzene	μg/L	<1	<1	<1	<1
Sec-butyl benzene	μg/L	<1	<1	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1	<1	<1
4-isopropyl toluene	μg/L	<1	<1	<1	<1
1,2-dichlorobenzene	μg/L	<1	<1	<1	<1
n-butyl benzene	μg/L	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1	<1	<1
1,2,4-trichlorobenzene	μg/L	<1	<1	<1	<1
Hexachlorobutadiene	μg/L	<1	<1	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	115	115	115	116
Surrogate toluene-d8	%	99	99	99	99
Surrogate 4-BFB	%	101	103	101	101

vTRH(C6-C10)/BTEXN in Water						
Our Reference		297295-1	297295-2	297295-3	297295-4	297295-5
Your Reference	UNITS	MW601	MW603	MW701	WDUP601	TS-W601
Date Sampled		06/06/2022	06/06/2022	06/06/2022	06/06/2022	06/06/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	09/06/2022	09/06/2022	09/06/2022	09/06/2022	09/06/2022
Date analysed	-	10/06/2022	10/06/2022	10/06/2022	10/06/2022	10/06/2022
TRH C ₆ - C ₉	μg/L	<10	<10	<10	<10	[NA]
TRH C ₆ - C ₁₀	μg/L	<10	<10	<10	<10	[NA]
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10	[NA]
Benzene	μg/L	<1	<1	<1	<1	85%
Toluene	μg/L	<1	<1	<1	<1	92%
Ethylbenzene	μg/L	<1	<1	<1	<1	96%
m+p-xylene	μg/L	<2	<2	<2	<2	96%
o-xylene	μg/L	<1	<1	<1	<1	98%
Naphthalene	μg/L	<1	<1	<1	<1	[NA]
Surrogate Dibromofluoromethane	%	93	93	93	94	118
Surrogate toluene-d8	%	100	100	99	100	99
Surrogate 4-BFB	%	106	107	105	105	98

vTRH(C6-C10)/BTEXN in Water		
Our Reference		297295-6
Your Reference	UNITS	TB-W601
Date Sampled		06/06/2022
Type of sample		Water
Date extracted	-	09/06/2022
Date analysed	-	10/06/2022
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
m+p-xylene	μg/L	<2
o-xylene	μg/L	<1
Surrogate Dibromofluoromethane	%	115
Surrogate toluene-d8	%	98
Surrogate 4-BFB	%	98

svTRH (C10-C40) in Water					
Our Reference		297295-1	297295-2	297295-3	297295-4
Your Reference	UNITS	MW601	MW603	MW701	WDUP601
Date Sampled		06/06/2022	06/06/2022	06/06/2022	06/06/2022
Type of sample		Water	Water	Water	Water
Date extracted	-	10/06/2022	10/06/2022	10/06/2022	10/06/2022
Date analysed	-	11/06/2022	11/06/2022	11/06/2022	11/06/2022
TRH C ₁₀ - C ₁₄	μg/L	<50	120	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100	<100
Total +ve TRH (C10-C36)	μg/L	<50	120	<50	<50
TRH >C ₁₀ - C ₁₆	μg/L	<50	110	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	110	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	100	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	μg/L	<50	220	<50	<50
Surrogate o-Terphenyl	%	87	92	95	90

PAHs in Water - Low Level					
Our Reference		297295-1	297295-2	297295-3	297295-4
Your Reference	UNITS	MW601	MW603	MW701	WDUP601
Date Sampled		06/06/2022	06/06/2022	06/06/2022	06/06/2022
Type of sample		Water	Water	Water	Water
Date extracted	-	10/06/2022	10/06/2022	10/06/2022	10/06/2022
Date analysed	-	10/06/2022	10/06/2022	10/06/2022	10/06/2022
Naphthalene	μg/L	<0.2	<0.2	<0.2	<0.2
Acenaphthylene	μg/L	<0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	μg/L	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	86	88	95	87

HM in water - dissolved					
Our Reference		297295-1	297295-2	297295-3	297295-4
Your Reference	UNITS	MW601	MW603	MW701	WDUP601
Date Sampled		06/06/2022	06/06/2022	06/06/2022	06/06/2022
Type of sample		Water	Water	Water	Water
Date prepared	-	07/06/2022	07/06/2022	07/06/2022	07/06/2022
Date analysed	-	07/06/2022	07/06/2022	07/06/2022	07/06/2022
Arsenic-Dissolved	μg/L	1	2	<1	2
Cadmium-Dissolved	μg/L	<0.1	0.2	0.2	<0.1
Chromium-Dissolved	μg/L	<1	5	<1	<1
Copper-Dissolved	μg/L	<1	3	<1	<1
Lead-Dissolved	μg/L	<1	2	<1	<1
Mercury-Dissolved	μg/L	<0.05	0.07	<0.05	<0.05
Nickel-Dissolved	μg/L	40	19	2	43
Zinc-Dissolved	μg/L	12	26	8	11

Miscellaneous Inorganics				
Our Reference		297295-1	297295-2	297295-3
Your Reference	UNITS	MW601	MW603	MW701
Date Sampled		06/06/2022	06/06/2022	06/06/2022
Type of sample		Water	Water	Water
Date prepared	-	6/06/2022	6/06/2022	6/06/2022
Date analysed	-	6/06/2022	6/06/2022	6/06/2022
рН	pH Units	7.0	6.8	6.8
Electrical Conductivity	μS/cm	15,000	23,000	27,000

Cations in water Dissolved				
Our Reference		297295-1	297295-2	297295-3
Your Reference	UNITS	MW601	MW603	MW701
Date Sampled		06/06/2022	06/06/2022	06/06/2022
Type of sample		Water	Water	Water
Date digested	-	07/06/2022	07/06/2022	07/06/2022
Date analysed	-	07/06/2022	07/06/2022	07/06/2022
Calcium - Dissolved	mg/L	190	220	290
Magnesium - Dissolved	mg/L	610	1,200	1,400
Hardness	mgCaCO 3 /L	3,000	5,300	6,600

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results fo water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALIT	Y CONTROL	: VOCs i	n water			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			09/06/2022	1	09/06/2022	09/06/2022		09/06/2022	
Date analysed	-			10/06/2022	1	10/06/2022	10/06/2022		10/06/2022	
Dichlorodifluoromethane	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Chloromethane	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Vinyl Chloride	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Bromomethane	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Chloroethane	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Trichlorofluoromethane	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
1,1-Dichloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Trans-1,2-dichloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,1-dichloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	99	
Cis-1,2-dichloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Bromochloromethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Chloroform	μg/L	1	Org-023	<1	1	<1	<1	0	100	
2,2-dichloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dichloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	105	
1,1,1-trichloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	101	
1,1-dichloropropene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Cyclohexane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Carbon tetrachloride	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Dibromomethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dichloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Trichloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	101	
Bromodichloromethane	μg/L	1	Org-023	<1	1	<1	<1	0	100	
trans-1,3-dichloropropene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
cis-1,3-dichloropropene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,1,2-trichloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Toluene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,3-dichloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Dibromochloromethane	μg/L	1	Org-023	<1	1	<1	<1	0	100	
1,2-dibromoethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Tetrachloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	102	
1,1,1,2-tetrachloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Chlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Ethylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Bromoform	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
m+p-xylene	μg/L	2	Org-023	<2	1	<2	<2	0	[NT]	
Styrene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,1,2,2-tetrachloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	

QUALIT	Y CONTROL: VOCs in water					Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]	
o-xylene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
1,2,3-trichloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
Isopropylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
Bromobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
n-propyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
2-chlorotoluene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
4-chlorotoluene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
1,3,5-trimethyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
Tert-butyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
1,2,4-trimethyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
1,3-dichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
Sec-butyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
1,4-dichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
4-isopropyl toluene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
1,2-dichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
n-butyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
1,2-dibromo-3-chloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
1,2,4-trichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
Hexachlorobutadiene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
1,2,3-trichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
Surrogate Dibromofluoromethane	%		Org-023	114	1	115	116	1	121		
Surrogate toluene-d8	%		Org-023	98	1	99	99	0	99		
Surrogate 4-BFB	%		Org-023	101	1	101	102	1	101		

QUALITY CONT		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			09/06/2022	1	09/06/2022	09/06/2022		09/06/2022	
Date analysed	-			10/06/2022	1	10/06/2022	10/06/2022		10/06/2022	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	1	<10	<10	0	96	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	1	<10	<10	0	96	
Benzene	μg/L	1	Org-023	<1	1	<1	<1	0	95	
Toluene	μg/L	1	Org-023	<1	1	<1	<1	0	96	
Ethylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	97	
m+p-xylene	μg/L	2	Org-023	<2	1	<2	<2	0	97	
o-xylene	μg/L	1	Org-023	<1	1	<1	<1	0	98	
Naphthalene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	92	1	93	116	22	98	
Surrogate toluene-d8	%		Org-023	98	1	100	99	1	100	
Surrogate 4-BFB	%		Org-023	106	1	106	102	4	105	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]	
Date extracted	-			10/06/2022	[NT]		[NT]	[NT]	10/06/2022		
Date analysed	-			10/06/2022	[NT]		[NT]	[NT]	10/06/2022		
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	102		
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	97		
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	94		
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	102		
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	97		
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	94		
Surrogate o-Terphenyl	%		Org-020	90	[NT]		[NT]	[NT]	114		

QUALITY C	ONTROL: PAH	ls in Wate	r - Low Level			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			10/06/2022	[NT]		[NT]	[NT]	10/06/2022	
Date analysed	-			10/06/2022	[NT]		[NT]	[NT]	10/06/2022	
Naphthalene	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	93	
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	95	
Fluorene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	97	
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98	
Anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98	
Pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	107	
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	101	
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	100	
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	99	[NT]		[NT]	[NT]	90	

Envirolab Reference: 297295

Revision No: R01

QUALITY CC	NTROL: HN	I in water	- dissolved			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date prepared	-			07/06/2022	1	07/06/2022	07/06/2022		07/06/2022	
Date analysed	-			07/06/2022	1	07/06/2022	07/06/2022		07/06/2022	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	1	[NT]		99	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	[NT]		98	
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	<1	[NT]		94	
Copper-Dissolved	μg/L	1	Metals-022	<1	1	<1	[NT]		98	
Lead-Dissolved	μg/L	1	Metals-022	<1	1	<1	[NT]		97	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	119	
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	40	[NT]		101	
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	12	[NT]		100	

QUALITY COI	QUALITY CONTROL: Miscellaneous Inorganics							Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date prepared	-			06/06/2022	[NT]		[NT]	[NT]	06/06/2022		
Date analysed	-			06/06/2022	[NT]		[NT]	[NT]	06/06/2022		
рН	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	101		
Electrical Conductivity	μS/cm	1	Inorg-002	<1	[NT]		[NT]	[NT]	103		

QUALITY CONTROL: Cations in water Dissolved							Duplicate				
Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]		
-			07/06/2022	[NT]		[NT]	[NT]	07/06/2022			
-			07/06/2022	[NT]		[NT]	[NT]	07/06/2022			
mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	105			
mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	109			
mgCaCO3/L	3	Metals-020	<3	[NT]		[NT]	[NT]	[NT]			
	Units mg/L mg/L	Units PQL mg/L 0.5 mg/L 0.5	Units PQL Method - mg/L 0.5 Metals-020 mg/L 0.5 Metals-020	Units PQL Method Blank - 07/06/2022 - 07/06/2022 mg/L 0.5 Metals-020 <0.5 mg/L 0.5 Metals-020 <0.5	Units PQL Method Blank # - 07/06/2022 NTI - 07/06/2022 NTI mg/L 0.5 Metals-020 <0.5 NTI mg/L 0.5 Metals-020 <0.5 NTI	Units PQL Method Blank # Base - 07/06/2022 NT [NT] - 07/06/2022 NT [NT] mg/L 0.5 Metals-020 <0.5 [NT] [NT] mg/L 0.5 Metals-020 <0.5 [NT] [NT]	Units PQL Method Blank # Base Dup. - 07/06/2022 NTJ [NT] [NT] - 07/06/2022 NTJ [NT] [NT] mg/L 0.5 Metals-020 <0.5 [NT] [NT] [NT] mg/L 0.5 Metals-020 <0.5 [NT] [NT] [NT]	Units PQL Method Blank # Base Dup. RPD - 07/06/2022 NTI (NT) (NT) (NT) - 07/06/2022 NTI (NT) (NT) (NT) mg/L 0.5 Metals-020 <0.5 (NT) (NT) (NT) (NT) mg/L 0.5 Metals-020 <0.5 (NT) (NT) (NT) (NT)	Units PQL Method Blank # Base Dup. RPD LCS-W1 - 07/06/2022 NT NT NT 07/06/2022 - 07/06/2022 NT NT NT 07/06/2022 mg/L 0.5 Metals-020 <0.5 NT NT NT NT 105 mg/L 0.5 Metals-020 <0.5 NT NT NT NT 109		

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 297295

Revision No: R01

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 297295 Page | 20 of 20

Revision No: R01

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Harry Leonard

Sample Login Details	
Your reference	E33780PL, Kingswood
Envirolab Reference	297295
Date Sample Received	06/06/2022
Date Instructions Received	06/06/2022
Date Results Expected to be Reported	14/06/2022

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	6 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	4
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	VOCs in water	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water - Low Level	HM in water - dissolved	Hd	Electrical Conductivity	Cations in water Dissolved
MW601	✓	✓	✓	✓	✓	✓	✓	✓
MW603	✓	✓	✓	✓	✓	✓	✓	✓
NAVA/704	1	1	1	1	√	√	✓	1
MW701				L	Ľ	1		
WDUP601	✓	· ✓	✓	✓	✓			
	·	1	✓	✓	✓			

The '\sqrt{'} indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

PTY LTD 067 00d M Sample Number	JKE Job Number: Date Results Required: Page:		E33780PL STANDARD 1 of 1						OF 11 QUARI	IS WIC	KS RO	W 211	3		
ood M Sample	Number: Date Results Required:		STANDARD					MAC	OF 11 QUARI	IS WIC	KS RO)AD W 211	3		
ood. M Sample	Date Results Required:							MAC	OF 11 QUARI	IS WIC	KS RO)AD W 211	3		
ood. M Sample	Required:							MAC	OF 11 QUARI	IS WIC	KS RO)AD W 211	3		
M Sample	Required:							MAC	QUARI	E PAR	K, NS	W 211		:001	
M Sample			1 of 1											เกกา	
M Sample	Page:		1 of 1					P: 02-	9888 !	5000			2002	รถกา	
M Sample	Page:		1 of 1							r		F: 02-			
M Sample					l .					L		iarry L			
M Sample	<u> </u>											ents.co	m.au		
Sample							Sam	ple Pr	eserve	ed in E	sky or	n ice			
Sample	<u> </u>							To	ests Re	equire	:d				
				1											
1	Sample Containers	PID	Sample Description	Combo 2	Combo 3L	VOCs	pH / EC	8 Metais	PAHs	ткн/втех	ВТЕХ	Hardness			
MW601	2xG1, 4xV, 1xH, 1xPVC	0	Water		x	x	х					x			
MW603	2xG1, 4xV, 1xH, 1xPVC	0	Water		х	х	х					х			
MW701	2xG1, 4xV, 1xH, 1xPVC	Ô	Water		x	x	x					x	·——		
WDUP601	1xG1, 4xV, 1xH	-	Water		х	х									
WDUP602	2xG1, 4xV, 1xH	-	Water		x	х	Se	end to Envirolab VIC							
TS-W601	1xBTEX	-	Water								х				
TB-W601	1xBTEX	-	Water								х				<u>.</u>
								 	,						<u> </u>
				<u> </u>								3 -		12 A	
 										J->+	- /	Ci.,			
										L.	. Rec	eived	ک کا	10	0
 	_			\vdash			-			, l	2 Co	By: ´ ?]/An			
				-	_	_			-	7 .0	ing (Ś	ייייילל		
detection limits	s required):		<u> </u>							,					
# Send t	o Envirolab VIC			V - B	TEX Vi	al	н - н	NO3 V	Vash P	٧C					
<u> </u>				11.45	<u>- нич</u>	<u>Plast</u>	ic Bot	tles					Date:		
		detection limits required): # Send to Envirolab VIC			# Send to Envirolab VIC V - B	# Send to Envirolab VIC V - BTEX VI	# Send to Envirolab VIC V - BTEX Vial	detection limits required): # Send to Envirolab VIC Sample Containers: G1 - Amber Glass Bottl V - BTEX Vial H - H	detection limits required): Sample Containers: G1 - Amber Glass Bottle # Send to Envirolab VIC V - BTEX Vial H - HNO3 V	detection limits required): # Send to Envirolab VIC Sample Containers: G1 - Amber Glass Bottle V - BTEX Vial H - HNO3 Wash P	detection limits required): # Send to Envirolab VIC L. Tim P Sample Containers: G1 - Amber Glass Bottle V - BTEX Vial H - HNO3 Wash PVC	detection limits required): Sample Containers: G1 - Amber Glass Bottle V - BTEX Vial H - HNO3 Wash PVC	detection limits required): Sample Containers: G1 - Amber Glass Bottle V - BTEX Vial H - HNO3 Wash PVC	detection limits required): Sample Containers: G1 - Amber Glass Bottle V - BTEX Vial H - HNO3 Wash PVC	12 Active 12 Active 12 Active 12 Active 12 Active 13 Active 14 Active 15 A

Envirolab Services Pty Ltd

ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 31872

Client Details	
Client	JK Environments
Attention	Harry Leonard
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E33780PL
Number of Samples	1 Water
Date samples received	08/06/2022
Date completed instructions received	08/06/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	16/06/2022				
Date of Issue	16/06/2022				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By

Chris De Luca, Operations Manager

Authorised By

Pamela Adams, Laboratory Manager

VOCs in water - Routine Level		
Our Reference		31872-1
Your Reference	UNITS	WDUP602
Date Sampled		06/06/2022
Type of sample		Water
Date extracted	-	14/06/2022
Date analysed	-	14/06/2022
Dichlorodifluoromethane	μg/L	<10
Chloromethane	μg/L	<10
Vinyl Chloride	μg/L	<10
Bromomethane	μg/L	<10
Chloroethane	μg/L	<10
Trichlorofluoromethane	μg/L	<10
1,1-Dichloroethene	μg/L	<1
Trans-1,2-dichloroethene	μg/L	<1
1,1-dichloroethane	μg/L	<1
Cis-1,2-dichloroethene	μg/L	<1
Bromochloromethane	μg/L	<1
Chloroform	μg/L	<1
2,2-dichloropropane	μg/L	<1
1,2-dichloroethane	μg/L	<1
1,1,1-trichloroethane	μg/L	<1
1,1-dichloropropene	μg/L	<1
Cyclohexane	μg/L	<1
Carbon tetrachloride	μg/L	<1
Benzene	μg/L	<1
Dibromomethane	μg/L	<1
1,2-dichloropropane	μg/L	<1
Trichloroethene	μg/L	<1
Bromodichloromethane	μg/L	<1
trans-1,3-dichloropropene	μg/L	<1
cis-1,3-dichloropropene	μg/L	<1
1,1,2-trichloroethane	μg/L	<1
Toluene	μg/L	<1
1,3-dichloropropane	μg/L	<1
Dibromochloromethane	μg/L	<1
1,2-dibromoethane	μg/L	<1
Tetrachloroethene	μg/L	<1
1,1,1,2-tetrachloroethane	μg/L	<1
Chlorobenzene	μg/L	<1
Ethylbenzene	μg/L	<1

VOCs in water - Routine Level		
Our Reference		31872-1
Your Reference	UNITS	WDUP602
Date Sampled		06/06/2022
Type of sample		Water
Bromoform	μg/L	<1
m+p-xylene	μg/L	<2
Styrene	μg/L	<1
1,1,2,2-tetrachloroethane	μg/L	<1
o-xylene	μg/L	<1
1,2,3-trichloropropane	μg/L	<1
Isopropylbenzene	μg/L	<1
Bromobenzene	μg/L	<1
n-propyl benzene	μg/L	<1
2-chlorotoluene	μg/L	<1
4-chlorotoluene	μg/L	<1
1,3,5-trimethyl benzene	μg/L	<1
Tert-butyl benzene	μg/L	<1
1,2,4-trimethyl benzene	μg/L	<1
1,3-dichlorobenzene	μg/L	<1
Sec-butyl benzene	μg/L	<1
1,4-dichlorobenzene	μg/L	<1
4-isopropyl toluene	μg/L	<1
1,2-dichlorobenzene	μg/L	<1
n-butyl benzene	μg/L	<1
1,2-dibromo-3-chloropropane	μg/L	<1
1,2,4-trichlorobenzene	μg/L	<1
Hexachlorobutadiene	μg/L	<1
1,2,3-trichlorobenzene	μg/L	<1
Surrogate Dibromofluoromethane	%	102
Surrogate toluene-d8	%	98
Surrogate 4-BFB	%	96

vTRH(C6-C10)/BTEXN in Water		
Our Reference		31872-1
Your Reference	UNITS	WDUP602
Date Sampled		06/06/2022
Type of sample		Water
Date extracted	-	14/06/2022
Date analysed	-	14/06/2022
TRH C ₆ - C ₉	μg/L	<10
TRH C ₆ - C ₁₀	μg/L	<10
TRH C ₆ -C ₁₀ less BTEX (F1)	μg/L	<10
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
m+p-xylene	μg/L	<2
o-xylene	μg/L	<1
Naphthalene	μg/L	<1
Total +ve Xylenes	μg/L	<1
Total BTEX in water	μg/L	<1
Surrogate Dibromofluoromethane	%	108
Surrogate toluene-d8	%	104
Surrogate 4-BFB	%	98

TRH Water(C10-C40) NEPM		
Our Reference		31872-1
Your Reference	UNITS	WDUP602
Date Sampled		06/06/2022
Type of sample		Water
Date extracted	-	09/06/2022
Date analysed	-	09/06/2022
TRH C ₁₀ - C ₁₄	μg/L	<50
TRH C ₁₅ - C ₂₈	μg/L	<100
TRH C ₂₉ - C ₃₆	μg/L	<100
Total +ve TRH (C10-C36)	μg/L	<50
TRH >C ₁₀ - C ₁₆	μg/L	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100
Total +ve TRH (>C10-C40)	μg/L	<50
Surrogate o-Terphenyl	%	78

PAHs in Water - Low Level		
Our Reference		31872-1
Your Reference	UNITS	WDUP602
Date Sampled		06/06/2022
Type of sample		Water
Date extracted	-	09/06/2022
Date analysed	-	10/06/2022
Naphthalene	μg/L	<0.1
Acenaphthylene	μg/L	<0.1
Acenaphthene	μg/L	<0.1
Fluorene	μg/L	<0.1
Phenanthrene	μg/L	<0.1
Anthracene	μg/L	<0.1
Fluoranthene	μg/L	<0.1
Pyrene	μg/L	<0.1
Benzo(a)anthracene	μg/L	<0.1
Chrysene	μg/L	<0.1
Benzo(b,j&k)fluoranthene	μg/L	<0.2
Benzo(a)pyrene	μg/L	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1
Total +ve PAH's	μg/L	NIL (+)VE PAH
Benzo(a)pyrene TEQ	μg/L	<0.5
Surrogate p-Terphenyl-d ₁₄	%	86

HM in water - dissolved		
Our Reference		31872-1
Your Reference	UNITS	WDUP602
Date Sampled		06/06/2022
Type of sample		Water
Date prepared	-	10/06/2022
Date analysed	-	10/06/2022
Arsenic-Dissolved	μg/L	<1
Cadmium-Dissolved	μg/L	0.3
Chromium-Dissolved	μg/L	<1
Copper-Dissolved	μg/L	2
Lead-Dissolved	μg/L	<1
Nickel-Dissolved	μg/L	27
Zinc-Dissolved	μg/L	41
Mercury-Dissolved	μg/L	<0.05

Method ID	Methodology Summary
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-022	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY COI	NTROL: VOCs	in water -	Routine Level			Du	ıplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			14/06/2022	[NT]		[NT]	[NT]	14/06/2022	
Date analysed	-			14/06/2022	[NT]		[NT]	[NT]	14/06/2022	
Dichlorodifluoromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Vinyl Chloride	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Bromomethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloroethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Trichlorofluoromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
1,1-Dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trans-1,2-dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1-dichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	99	
Cis-1,2-dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Bromochloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chloroform	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	98	
2,2-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	93	
1,1,1-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	95	
1,1-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Cyclohexane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Carbon tetrachloride	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Dibromomethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	98	
Bromodichloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	93	
trans-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
cis-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,3-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Dibromochloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	88	
1,2-dibromoethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Tetrachloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	95	
1,1,1,2-tetrachloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Bromoform	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	85	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	[NT]	
Styrene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2,2-tetrachloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	

QUALITY CONT	ROL: VOCs	in water ·	- Routine Level			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2,3-trichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Isopropylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Bromobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
n-propyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
2-chlorotoluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
4-chlorotoluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,3,5-trimethyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Tert-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2,4-trimethyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,3-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Sec-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,4-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
4-isopropyl toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
n-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2-dibromo-3-chloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2,4-trichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Hexachlorobutadiene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2,3-trichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Surrogate Dibromofluoromethane	%		Org-023	99	[NT]		[NT]	[NT]	99	[NT]
Surrogate toluene-d8	%		Org-023	98	[NT]		[NT]	[NT]	100	[NT]
Surrogate 4-BFB	%		Org-023	93	[NT]		[NT]	[NT]	101	[NT]

QUALITY CONT	ROL: vTRH(C6-C10)/E	BTEXN in Water			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			14/06/2022	[NT]		[NT]	[NT]	14/06/2022		
Date analysed	-			14/06/2022	[NT]		[NT]	[NT]	14/06/2022		
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	101		
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	100		
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	101		
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	101		
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	96		
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	103		
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	93		
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	93		
Surrogate Dibromofluoromethane	%		Org-023	105	[NT]		[NT]	[NT]	99		
Surrogate toluene-d8	%		Org-023	104	[NT]		[NT]	[NT]	98		
Surrogate 4-BFB	%		Org-023	95	[NT]		[NT]	[NT]	99		

QUALITY CONT	QUALITY CONTROL: TRH Water(C10-C40) NEPM								Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			09/06/2022	[NT]		[NT]	[NT]	09/06/2022		
Date analysed	-			09/06/2022	[NT]		[NT]	[NT]	09/06/2022		
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	72		
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	90		
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	93		
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	72		
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	90		
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	93		
Surrogate o-Terphenyl	%		Org-020	75	[NT]		[NT]	[NT]	69		

QUALITY C	ONTROL: PAR	ls in Wate	er - Low Level			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			09/06/2022	[NT]		[NT]	[NT]	09/06/2022	
Date analysed	-			10/06/2022	[NT]		[NT]	[NT]	10/06/2022	
Naphthalene	μg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	66	
Acenaphthylene	μg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	μg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	84	
Fluorene	μg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	92	
Phenanthrene	μg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	102	
Anthracene	μg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	μg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	100	
Pyrene	μg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	104	
Benzo(a)anthracene	μg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	μg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	98	
Benzo(b,j&k)fluoranthene	μg/L	0.2	Org-022	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	μg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	88	
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	μg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	μg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d ₁₄	%		Org-022	96	[NT]		[NT]	[NT]	100	

QUALITY CONTROL: HM in water - dissolved						Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			10/06/2022	[NT]		[NT]	[NT]	10/06/2022	
Date analysed	-			10/06/2022	[NT]		[NT]	[NT]	10/06/2022	
Arsenic-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	85	
Cadmium-Dissolved	μg/L	0.1	Metals-022 ICP-MS	<0.1	[NT]		[NT]	[NT]	87	
Chromium-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	86	
Copper-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	87	
Lead-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	83	
Nickel-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	86	
Zinc-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	87	
Mercury-Dissolved	μg/L	0.05	Metals-021 CV-AAS	<0.05	[NT]		[NT]	[NT]	106	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Revision No: R00

Envirolab Reference: 31872 Page | 15 of 16

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 31872 Page | 16 of 16

Envirolab Services Pty Ltd

ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Harry Leonard

Sample Login Details		
Your reference	E33780PL	
Envirolab Reference	31872	
Date Sample Received	08/06/2022	
Date Instructions Received	08/06/2022	
Date Results Expected to be Reported	16/06/2022	

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	6.2
Cooling Method	Icepack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Pamela Adams	Chris De Luca	
Phone: 03 9763 2500	Phone: 03 9763 2500	
Fax: 03 9763 2633	Fax: 03 9763 2633	
Email: padams@envirolab.com.au	Email: cdeluca@envirolab.com.au	

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645 - 002
25 Research Drive Croydon South VIC 3136
ph 03 9763 2500 fax 03 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

Sample ID	VOCs in water - Routine Level	vTRH(C6-C10)/BTEXN in Water	TRH Water(C10-C40) NEPM	PAHs in Water - Low Level	HM in water - dissolved
WDUP602	✓	✓	✓	✓	✓

The '\sqrt{'} indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

SAMPLE AND CHAIN OF CUSTODY FORM FROM: TO: ENVIROLAB SERVICES PTY LTD JKE Job E33780PL 12 ASHLEY STREET Number: KEnvironments **CHATSWOOD NSW 2067** STANDARD REAR OF 115 WICKS ROAD P: (02) 99106200 Date Results MACQUARIE PARK, NSW 2113 F: (02) 99106201 Required: P: 02-9888 5000 F: 02-9888 5001 Page: 1 of 1 Attention: Harry Leonard Attention: Aileen HLeonard@jkenvironments.com.au Sample Preserved in Esky on Ice Location: Kingswood Tests Required EW / AM Sampler: Sample Description Combo 3L Hardness 8 Metals TRH/BTEX Combo 2 VOCs Lab Date Sample Sample Containers PID Sampled Ref: Number 2xG1, 4xV, 1xH, MW601 6/06/2022 n Water X X X X 1xPVC 2xG1, 4xV, 1xH, MW603 6/06/2022 Ó Water. X X X X 1xPVC 2xG1, 4xV, 1xH, 3 6/06/2022 MW701 0 Water X X X Х 1xPVC 6/06/2022 WDUP601 1xG1, 4xV, 1xH Water X X WDUP602 Send to Envirolab VIC 6/06/2022 # 2xG1, 4xV, 1xH Water X X 6/06/2022 TS-W601 1xBTEX Water X 5 -6 6/06/2022 TB-W601 1xBTEX Water $\widetilde{\mathbf{X}}$ ÷ En Trotal Services Dos. ich ['e Croydon South VIC 3100 Ph: (u3) 9703 2500 12 Adamy :ÀB Ci. tswood NS ಸ ೭ Ph: (02) 9910 62 Jup blo Ν<u>ο:</u> <u>Job</u> .. Received Tune Ive Time Redeived Receive $\gamma \cdot m \nu \in$ 2/CdD/An Cooling bieni The ing(ise) Remarks (comments/detection limits required): Sample Containers: G1 - Amber Glass Bottle # Send to Envirolab VIC V - BTEX Vial H - HNO3 Wash PVC PVC - HDPE Plastic Bottles Relinquished By: AM Received By: Date: 6/6/22 Date: 6/6/22 Time: ELS SUUNEY 7/6/22 1525 1535

emulenne

Appendix F: Report Explanatory Notes

QA/QC Definitions

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994)²⁰ methods and those described in *Environmental Sampling and Analysis, A Practical Guide,* (1991)²¹. The NEPM (2013) is consistent with these documents.

A. Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection Limit for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations: "The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" (Keith, 1991).

B. Precision

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD).

C. Accuracy

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured (i.e. the proximity of an averaged result to the true value, where all random errors have been statistically removed). The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes. Accuracy is typically reported as percent recovery.

D. Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

E. Completeness

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms;
- Sample receipt form;
- All sample results reported;
- All blank data reported;

²⁰ US EPA, (1994). SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. (US EPA SW-846)

²¹ Keith., H, (1991). Environmental Sampling and Analysis, A Practical Guide

- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

F. Comparability

Comparability is the evaluation of the similarity of conditions (e.g. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

G. Blanks

The purpose of laboratory and field blanks is to check for artefacts and interferences that may arise during sampling, transport and analysis.

H. Matrix Spikes

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

(Spike Sample Result – Sample Result) x 100 Concentration of Spike Added

I. Surrogate Spikes

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

J. <u>Duplicates</u>

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

 $\frac{(D1 - D2) \times 100}{\{(D1 + D2)/2\}}$

Appendix G: Data (QA/QC) Evaluation

Data (QA/QC) Evaluation

A. <u>INTRODUCTION</u>

This Data (QA/QC) Evaluation forms part of the validation process for the DQOs documented in Section 4.1 of this report. Checks were made to assess the data in terms of precision, accuracy, representativeness, comparability and completeness. These 'PARCC' parameters are referred to collectively as DQIs and are defined in the Report Explanatory Notes attached in the report appendices.

1. Field and Laboratory Considerations

The quality of the analytical data produced for this project has been considered in relation to the following:

- Sample collection, storage, transport and analysis;
- Laboratory PQLs;
- Field QA/QC results; and
- Laboratory QA/QC results.

2. Field QA/QC Samples and Analysis

A summary of the field QA/QC samples collected and analysed for this investigation is provided in the following table:

Sample Type	Sample Identification	Frequency (of Sample Type)	Analysis Performed
Intra-laboratory duplicate (soil)	SDUP701 (primary sample BH701 0.14-0.55m)	Approximately 10% of primary samples	Heavy metals, TRH/BTEX, PAHs, OCPs, OPPs and PCBs
Inter-laboratory duplicate (soil)	SDUP702 (primary sample BH702 0.06-0.3m)	Approximately 10% of primary samples	Heavy metals, TRH/BTEX, PAHs, OCPs, OPPs and PCBs
Intra-laboratory duplicate (water)	WDUP601 (primary sample MW601)	Approximately 30% of primary samples	Heavy metals, TRH/BTEX, PAHs and VOCs
Inter-laboratory duplicate (water)	WDUP602 (primary sample MW603)	Approximately 30% of primary samples	Heavy metals, TRH/BTEX, PAHs and VOCs
Trip spike (soil)	TS-S701 (28/05/2022)	One per day of soil sampling	BTEX
Trip spike (soil)	TS-T1 (04/06/2022)	One per day of soil sampling	BTEX
Trip spike (water)	TS-W601 (06/06/2022)	One for the investigation to demonstrate adequacy of preservation, storage and transport methods	BTEX
Trip blank (soil)	TB-S701 (28/05/2022)	One per day of soil sampling	TRH/BTEX, PAHs and heavy metals
Trip blank (soil)	TB-S1 (04/06/2022)	One per day of soil sampling	TRH/BTEX

Sample Type	Sample Identification	Frequency (of Sample Type)	Analysis Performed
Trip blank (water)	TB-W601 (06/06/2022)	One for the investigation to demonstrate adequacy of preservation, storage and transport methods	BTEX
Rinsate (soil SPT)	FR-SPT701 (28/05/2022)	One for the investigation to demonstrate adequacy of decontamination methods	Heavy metals, TRH/BTEX and PAHs

The results for the field QA/QC samples are detailed in the laboratory summary tables (Table Q1 to Table Q2 inclusive) attached to the investigation report and are discussed in the subsequent sections of this Data (QA/QC) Evaluation report.

3. Data Assessment Criteria

JKE adopted the following criteria for assessing the field and laboratory QA/QC analytical results:

Field Duplicates

Acceptable targets for precision of field duplicates in this report will be 30% or less, consistent with NEPM (2013). RPD failures will be considered qualitatively on a case-by-case basis taking into account factors such as the concentrations used to calculate the RPD (i.e. RPD exceedance where concentrations are close to the PQL are typically not as significant as those where concentrations are reported at least five or 10 times the PQL), sample type, collection methods and the specific analyte where the RPD exceedance was reported.

Field/Trip Blanks and Rinsates

Acceptable targets for field blank and rinsate samples in this report will be less than the PQL for organic analytes. Metals will be considered on a case-by-case basis with regards to typical background concentrations in soils and published drinking water guidelines for waters.

Trip Spikes

Acceptable targets for trip spike samples in this report will be 70% to 130%.

Laboratory QA/QC

The suitability of the laboratory data is assessed against the laboratory QA/QC criteria which is outlined in the laboratory reports. These criteria were developed and implemented in accordance with the laboratory's NATA accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

A summary of the acceptable limits adopted by the primary laboratory (Envirolab) is provided below:

RPDs

- Results that are <5 times the PQL, any RPD is acceptable; and
- Results >5 times the PQL, RPDs between 0-50% are acceptable.

Laboratory Control Samples (LCS) and Matrix Spikes

- 70-130% recovery acceptable for metals and inorganics;
- 60-140% recovery acceptable for organics; and
- 10-140% recovery acceptable for VOCs.

Surrogate Spikes

- 60-140% recovery acceptable for general organics; and
- 10-140% recovery acceptable for VOCs.

Method Blanks

All results less than PQL.

B. <u>DATA EVALUATION</u>

1. Sample Collection, Storage, Transport and Analysis

Samples were collected by trained field staff in accordance. Field sampling procedures were designed to be consistent with relevant guidelines, including NEPM (2013) and other guidelines made under the CLM Act 1997.

Appropriate sample preservation, handling and storage procedures were adopted. Laboratory analysis was undertaken within specified holding times generally in accordance with Schedule B(3) of NEPM (2013) and the laboratory NATA accredited methodologies.

JKE note that the temperature on receipt of soil samples was reported to be up to 18°C in one batch. JKE understand that the temperature is measured at the laboratory using an infrared temperature probe by scanning the outside of the sample container (i.e. one sample jar/container at the time of registering the samples). This procedure is not considered to be robust as there is a potential for the outside of the jar to warm to ambient temperature, or at least to increase from that of the internal contents, relatively quickly. On this basis, JKE is of the opinion that the temperatures reported on the Sample Receipts are unlikely to be reliable or representative of the overall batch. This is further supported by the soil trip spike recovery results (discussed further below) for this batch which reported adequate recovery in the range of 96% to 103%.

Envirolab noted that the asbestos results were reported to be consistent with the recommendations in NEPM (2013), however this level of reporting is outside the scope of their NATA accreditation. In the absence of other available analytical methods for asbestos, this was found to be acceptable for the purpose of this investigation.

Review of the project data also indicated that:

- COC documentation was adequately maintained;
- Sample receipt advice documentation was provided for all sample batches;
- All analytical results were reported; and
- Consistent units were used to report the analysis results.

2. Laboratory PQLs

Appropriate PQLs were adopted for the analysis and all PQLs were below the SAC with the exception of the anthracene PQL for groundwater analysis which was 10 times greater than the ecological SAC and vinyl chloride for groundwater analysis which was approximately three times greater than the SSA SAC regarding human health. In light of the PAH and VOC concentrations reported, JKE is of the opinion that this is not significant, and it does not affect the quality of the dataset as a whole or the outcome of the investigation.

3. Field QA/QC Sample Results

Field Duplicates

The results indicated that field precision was acceptable. RPD non-conformances were reported for some analytes as discussed below:

- Elevated RPDs were reported for several PAH compounds and heavy metals in SDUP701/BH701 (0.014-0.55m). As both the primary and duplicate sample results were less than the SAC, the exceedances are not considered to have had an adverse impact on the data set as a whole;
- Elevated RPDs were reported for several heavy metals in WDUP2/MW603 and arsenic in MW601/WDUP601. Where the RPD exceedances are attributed to an increased sediment load in the lower part of the well given that the samples needed to be collected without steady state conditions being achieved;
- Elevated RPDs were reported for TRH (>C₁₀-C₁₆) and TRH (>C₁₆-C₃₄), in WDUP2/MW603. The RPD exceedances may be attributed to an increased sediment load in the lower part of the well given that the samples needed to be collected without steady state conditions being achieved.

Values outside the acceptable limits have been attributed to sample heterogeneity and the difficulties associated with obtaining homogenous duplicate samples of heterogeneous matrices. Where applicable, the higher duplicate value has been adopted as a conservative measure (see attached report tables).

Field/Trip Blanks

During the investigation, two soil trip blanks and one water trip blank were placed in the esky during sampling and transported back to the laboratory. The water trip blank analysis results were all less than the PQLs. The soil trip blank results were all less than the PQLs with the exception of chromium, copper and zinc in TB—S701 with reported concentrations of 3mg/kg, 3mg/kg and 1mg/kg respectively. Low level heavy metals concentrations are typical in washed sand which is utilised as blank material. In JKE's experience, the concentrations reported were consistent with background concentrations in a sand matrix and were not indicative of cross-contamination. On this basis, cross contamination between samples that may have significance for data validity did not occur.

Rinsates

All results were below the PQL with the exception of a trace detection of TRH ($>C_{10}-C_{16}$). The detectable concentration of TRH is most likely attributed to the deionised water used for the decontamination process being stored in plastic containers for extended periods of time. As there were no detection of TRH ($>C_{10}-C_{16}$) above the SAC in the soil samples, the exceedance in the rinsate sample is not considered to have had an adverse impact on the soil data set as a whole

Trip Spikes

The results ranged from 85% to 103% and indicated that field preservation methods were appropriate.

4. <u>Laboratory QA/QC</u>

The analytical methods implemented by the laboratory were performed in accordance with their NATA accreditation and were consistent with Schedule B(3) of NEPM (2013). The frequency of data reported for the laboratory QA/QC (i.e. duplicates, spikes, blanks, LCS) was considered to be acceptable for the purpose of this investigation.

A review of the laboratory QA/QC data identified the following minor non-conformances:

- Matrix spike recovery for some PAHs was not possible as the high concentration of analytes in sample BH706 (0-0.2). All results were below the SAC; and
- Matrix spike recovery for some heavy metals was not possible due to the inhomogeneous nature of the elements in the sample, however an acceptable recovery was obtained for the laboratory control sample.

The laboratory QA/QC non-conformances were considered to be minor and do not impact the data quality.

C. <u>DATA QUALITY SUMMARY</u>

JKE is of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

Non-conformances were reported for some field QA/QC samples and laboratory QA/QC analysis. These non-conformances were considered to be sporadic and minor, and were not considered to be indicative of systematic sampling or analytical errors. On this basis, these non-conformances are not considered to materially impact the report findings.

There was only one groundwater monitoring event undertaken for the investigation. On this basis there is some uncertainty around the representativeness of the groundwater data, particularly during different climatic conditions and after wet/dry periods. However, given the low contaminant concentrations reported, the site history and the surrounding land uses, this is not considered to alter the conclusions of the investigation. It is also noted that JKE has undertaken groundwater investigations throughout various parts of the hospital during redevelopment projects over the past five or more years and the groundwater results were broadly consistent with the results obtained previously.

Appendix H: Field Work Documents

Client:	Health Infr	rastructure				Job No.:	E337	E33780PL			
Project:	Proposed	CAMHS B	uilding			Well No.:		601			
Location:	Nepean H	ospital, De	erby Street, KINGSWOOD	, NSW		Depth (m):		9			
WELL FINISH			All No.								
X Gatic C			Standpipe	0			Other (descr	ibe)			
WELL PURGE DET	AILS:										
Method:		Lo	u Slow-per		SWL – Be	fore:	5.92				
Date:		616	And the second s		Time – Be	efore:	09:23)			
Undertaken By:		EL/			Total Vol	Removed:	6				
Pump Program No:		12!			PID (ppm)	·):	0.0				
PURGING / SAMPL	ING MEASURI	EMENTS									
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	рН	Eh (mV)			
9138	6.29	1		19.2	1.2	1566 5	6.63	72.6			
9:42	6.85	2		19.9	0.5	12602	6.57	67.0			
9:46	7.30	3	(34) 40 4 12 7 14 14 14 14 14 14 14 14 14 14 14 14 14	201	6.3	12681	6.57	65.9			
9:50	7.80	4	*************************	20.4	0.3	12813	6.55	570			
		/	Stabel Soupley	†		1.1.10					
			7								
*************			***************************************								

				ļ			*************				
			*****************************				*********				
*****************	***	***************************************						***************************************			
			**********************	†							
****************					********						
						************		4			
											
	***************************************		<=====================================			*************************		†			

		************	*********************								
Comments: Odours	(YES /(NO)	NAPL/PS	SH (YES /NO), Sheen (YE	S /(NOV St	eady State	Achieved (YE	S / (NO)				
		Low	Sift load, Lipt mber, 8 x BTEX vials, 2x	P601	taken			plastic			
Tested By: Alistair M	litchell /E		Remarks:								
Date Tested: 6/			- Steady state conditions		unite diffe	ronco in cond	otivity lass th	an 100/			
Checked By: HL	*************	********	- difference in the pH less than 0.2 units, difference in conductivity less than 10% 10% and SWL stable/not in drawdown								
Date: 14/6/2022			1	2.31700							

Client:	Health Inf	rastructure				Job No.:	E3378	RODI	
 Project:	Proposed	CAMHS B	uildina			Well No.:		603	
Location:			rby Street, KINGSWOOD	 , NSW	#	Depth (m):		10	
WELL FINISH					₹.				
X Gatic Co	over		Standpipe	- Name			Other (descri	ibe)	
WELL PURGE DETA	NLS:								
Method: \		Low	Slow- Pers	4	SWL - Be	fore:	3.68		
Date:		616	122		Time – Be	fore:	10 16		
Undertaken By:		EW/			Total Vol I	Removed:	15		
Pump Program No:		12:00	5 Oh die		PID (ppm)		0.00		
PURGING / SAMPLII	NG MEASUR	EMENTS			37. 3				
Time (min)	SWL (m)	Vol (L)	Notes	Ţemp (°C)	DO (mg/L)	EC (µS/cm)	рН	Eh (mV)	
10:27	395	1		18.2	0.9	18607	6.28	83.3	
10:31	4-42	2		18.7	0.4	18984	6.21	83.7	
10:35	4.90	3		18.7	0.3	18988	6.21	83.8	
10:35 41	5.71	5		18.6	0.2	18997	6.20	84.7	
10:45	6.27	6		18.6	0.2	19020	6.20	84.4	
10:49	6.78	7		18.6	0.2	19040	6.20	840	
L 02.53	7:24	8	ine de la companya del companya de la companya del companya de la	186	0.6	19041	6.20	83.4	
10:57	7.61	9		18.5	0.4	10978	6.27	81.8	
11:01	7.85	10		18.7	0.5	18746	6.22	79.9	
11:05	7:77	11		17.7	1.7	17871	6.36	78.0	
11:09	7.76	12		121	2.0	17509	648	737	
			Unoble to purp		high s		Sharlad Sen	ol >	
	-			†*************************************		15-10-0	5/37/19/	P1	
		4						***********	

				†					
	-								

	-			епапальнаем.					

his	of you	5.14	SH (YES /(NG), Sheen (YE	2					
Sampling Conta YSI used:	iners Used:	x glass al	mber, $8 \times BTEX vials, 2 \times$	หพบ3 plast	ic,∪ x H2S(J4 plastic, ∫ x	unpreserved p	plastic	
Tested By: Alistair Mi	tchell /E	W	Remarks:						
	122		- Steady state conditions		,,		¥(
Checked By: HL			- difference in the pH les 10% and SWL stable/no			ence in condu	ctivity less tha	n 10%	
Date: 14/6/2022			- Joyd Grid Ovve Stable/110	· III diawao	**11				

Client:	Health Infr	astructure				Job No.:	E33780PL		
Project:	Proposed	CAMHS B	uilding			Well No.:	1	201	
Location:	Nepean H	ospital, Dei	by Street, KINGSWOOD,	NSW		Depth (m):		6	
WELL FINISH									
X Gatic C			Standpipe				Other (desc	ribe)	
WELL PURGE DETA	AILS:								
Method:			Slow - Peri	SWL - Be	fore:	2.91			
Date:		06106			Time – Be		8:16		
Undertaken By:		EL/AM Total Vol R					8		
Pump Program No:		12:00	on dial	PID (ppm)	:	0.0	WORDS AND STREET		
PURGING / SAMPLI	NG MEASURI	MENTS							
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	рН	Eh (mV)	
8135	3.11			20-2	3.3	20576	5.4	101.3	
8:40	3.58	2		20.9	3.4	22116	6.37	93.7	
8:44	3,94	3		21.1	3.8	22010	6.34	90.1	
8:48	4.19	4		21.1	3.9	2542	6.25	89.0	
8:52	4.55	5		21.1	3.7	22097	6.26	89.7	
8 56	4.80	6		20.9	4.1	22437	6.31	89.7	
9:00	5303	7		20.9	3.4	22684	6:36	89.6	
			Starbod Sarpling						
			- F						
Comments: Odours	(YES / NO	NADI /DS	SH (YES / (NO)), Sheen (YE	S (NOV S	eady State	Achieved (VE	S //NOD		
	Lainers Used: (o⊷ S√ 2x glass an	hber, 7 x BTEX vials, x	HNO3 plast				d plastic	
Date Tested: 6/6 Checked By: HL	5122		- Steady state conditions - difference in the pH les 10% and SWL stable/no	s than 0.2		rence in condu	uctivity less th	nan 10%	

WATER QUALITY METER CALIBRATION FORM

Client: Health Infrastru	ucture
Project: Proposed CAM	HS Building
Location: Nepean Hospita	al, Derby Street, KINGSWOOD, NSW
Job Number: E33780PL	
D	ISSOLVED OXYGEN
Make: +51	Model: 4
Date of calibration: 06/06/2012	Name of Calibrator: EW
Span value: 70% to 130%	
Measured value: 99	
Measured reading Acceptable (Yes/No):	
	pH
Make: 🔨	Model: 4
Date of calibration: 7/6	Name of Calibrator: #W
Buffer 1: Theoretical pH = 7.01± 0.01	Expiry date: 6 22 Lot No: 373135
Buffer 2: Theoretical pH = 4.01± 0.01	Expiry date: APR 23 Lot No: 380832
Measured reading of Buffer 1: スリタ	
Measured reading of Buffer 2: 4-09	
Slope:	Measured reading Acceptable (Yes/No):
	EC
	Model: 4
Date: 7/6 Name of Calibra	ator: BW Temperature: 13 % °C
Calibration solution: Codestuty Standard	Expiry date: 05/23 Lot No: 38/243
Theoretical conductivity at temperature (see solution	n container): /089 μS/cm
Measured conductivity: 1349 μS/cm	Measured reading Acceptable (Yes/No):
	REDOX
	Model: 4
Date of calibration: OG/OG/2022	Name of Calibrator: EW
Calibration solution: 240 mV	Expiry date: 11/2 6 Lot No: 722
Theoretical redox value: 240mV	
Measured redox reading: 22℃ 7 mV	Measured reading Acceptable (Yes/No):

PID FIELD CALIBRATION FORM

	Health Infrastructure		
Project:	Proposed CAMHS Building		
Location:	Nepean Hospital, Derby Stro	eet, KINGSWOOD, NSW	
Job Number:	E33780PL		
	Р	ID	
Make: Mini Plue	Model: PGM 7350	Unit: Mini Rae Lt	Date of last factory calibration: $21/4/22$
Date of calibration:	17/5/12	Name of Calibrator: \mathcal{E} (N
Calibration gas: Iso-butylen	е	Calibration Gas Concentrati	on: 100.0 ppm
Measured reading: 10	2-3 ppm	Error in measured reading:	± 🖒 ppm
Measured reading Acceptab	le(Yĝs/No):		
	Р	ID	
Make: Mini Rae	Model: PGM7350	Unit: Mini Ree CZ	Date of last factory calibration: 21/4/22
Date of calibration: $1/6$	122	Name of Calibrator:	M
Calibration gas: Iso-butylen		Calibration Gas Concentrati	
Measured reading: DC		Error in measured reading:	\pm $\mathcal O$ ppm
Measured reading Acceptab	le (Yes/No):		
	Р	ID	
Make:	Model:	Unit:	Date of last factory calibration:
Date of calibration:		Name of Calibrator:	
Calibration gas: Iso-butylen	e	Calibration Gas Concentration	on: 100.0 ppm
Measured reading:	ppm	Error in measured reading:	± ppm
Measured reading Acceptab	le (Yes/No):		
	Р	ID	
Make:	P Model:	Unit:	Date of last factory calibration:
Date of calibration:	Model:	Unit:	calibration:
Date of calibration: Calibration gas: Iso-butylend Measured reading:	Model: e ppm	Unit: Name of Calibrator:	calibration:
Date of calibration: Calibration gas: Iso-butylend	Model: e ppm	Unit: Name of Calibrator: Calibration Gas Concentration	calibration:
Date of calibration: Calibration gas: Iso-butylend Measured reading:	Model: e ppm le (Yes/No):	Unit: Name of Calibrator: Calibration Gas Concentration	calibration:
Date of calibration: Calibration gas: Iso-butylend Measured reading:	Model: e ppm le (Yes/No):	Unit: Name of Calibrator: Calibration Gas Concentration Error in measured reading:	calibration:
Date of calibration: Calibration gas: Iso-butylend Measured reading:	Model: e ppm le (Yes/No):	Unit: Name of Calibrator: Calibration Gas Concentration Error in measured reading:	calibration: on: 100.0 ppm ± ppm
Date of calibration: Calibration gas: Iso-butylend Measured reading: Measured reading Acceptab	Model: e ppm le (Yes/No):	Unit: Name of Calibrator: Calibration Gas Concentration Error in measured reading:	calibration: on: 100.0 ppm ± ppm Date of last factory
Date of calibration: Calibration gas: Iso-butylend Measured reading: Measured reading Acceptab Make:	Model: e ppm le (Yes/No): P Model:	Unit: Name of Calibrator: Calibration Gas Concentration Error in measured reading: D Unit:	calibration: on: 100.0 ppm ± ppm Date of last factory calibration:
Date of calibration: Calibration gas: Iso-butylend Measured reading: Measured reading Acceptab Make: Date of calibration:	Model: e ppm le (Yes/No): P Model:	Unit: Name of Calibrator: Calibration Gas Concentration Error in measured reading: D Unit: Name of Calibrator:	calibration: on: 100.0 ppm ± ppm Date of last factory calibration:

Client:	Health Infrastructure					Job No.:		F	33780PL
Project:	Proposed CAMHS E					Well No.		······································	601
ocation:	Nepean Hospital, D	*************	EWOOD NEW						
		erby Street, Kind	SWOOD, NSW			Depth (n	1):		83
ELL FINI	SH DETAILS						T		
	Gatic 0	over 🔀	Standpi	ne 🔲			Other (des	cribe)	
ELL DEV	ELOPMENT DETAIL		Totalio p.				1011101 (000		
lethod:	Pagagaga ann de construero de Mara Me	Day	clopment	SWL - B	efore (m):			4.5	3
ate:	************************	28/	5/22	Time - B	efore:			12:0	2
ndertake	n By:	Am		SWL - A	ter (m):				
**********	Removed:			Time – A				12:2	Ö
	ng (ppm):	n				***************************************			
omments		U.	22						
	MENT MEASUREME	NTS							
Vol	ume Removed	Temp (°C)	DO		EC	рН		Eh (mV)
	(L)		' (r	ng/L)		S/cm)			
	S	21.2		0		346	6.7		1093
	10	212		. 6		287	6.4		101.2
	- 11	1 210	C	7.	13	248	66	8	89.6
		210	Pan	nul	Dry.				
				T			1		
	•••••	·		······					
				*************		**********			<u> </u>
		. The second second					A SOMETHIS STATE OF SO		
		1			1		1		
		+							
		4							
				manne-meneral	1	110-00-00-00-00-00-00-00-00-00-00-00-00-			
**********	*****				1	***********			
		-			· 				
	***********				- 6	W	1. 6.		
			HATTANITA THE STREET				40		
	***************************************			***************************************	T		İ	<u>-</u>	
		1		-1	1		1		***************************************
	***************************************		******	***********	·	***********			•••••
						B Part of Billion			
y							ļ	1.	
******					1				
	atentivostrujugosennonos ses			w Disconsission to the state of					
**********		1			I		Ī		
omments	:Odours (YES) / NO), NAPL/PSH	YES / (NO) Sh	een (YES	NOI Ste	ady State	Achieved (ES / NO)
				<i>V.</i> 1	الن	1	1		,
SI Used:	4	anic o	don	, mzh	814	600	u		
			,	U					
eted Pre		и In-	marke:						
sted By:	<i>P</i> 1		marks: teady state cond	ditions					
	0.0		teady state cont ifference in the		n () 2 unite	difference	e in the condi	ictiveity les	s than 10%
ate Tested	1 28		SWL stable/no			, uniciciic	o in the Condi	Jouvelly 168	3 maii 1076
		19210							
ecked By	,		linimum 3 monit	oring well vo	olumes pui	rged, unles	ss well purge	d until it is e	ffectively dry
		20							
ite:	14/6/20	22 I							

Client:	Health Infrastr	ucture				lob No.:		E33780PL			
Project:	Proposed CAN	MHS Building	***************************************			Well No.:		603			
Location:	Nepean Hospi	tal, Derby Street,	KINGSWOOD,	NSW		Depth (m):		102			
WELL FIN	SH DETAILS					575 FARE 1 1 1 2 5 0		102			
	T T	- E									
WELL DEV	ELOPMENT DE	atic Cover 🗵	Sta	indpipe 🔲		Ot	her (describe)	<u> </u>			
Well Dev	ELOPMENT DE		Vaclopme	SWL - Be	foro (m)			0 10			
Date:			28/5/22	Time - Be				3.49			
Undertake								12:27			
Total Vol. I			AM	SWL - Af							
PID Readir		•••••	14	Time – At				12:40			
Comments			0								
	MENT MEASUR	EMENTS									
	ıme Removed		ıp (°C)	DO	E	; T	- Ph	Fb (
	(L)			(mg/L)	(µS/d		pН	Eh (mV)			
		19		4.0	194	*********	641	102.4			
	10		5	1.6		7/3	6.31	1017			
	14		1.5	2.2		85	6-32	92.6			
			- Wal	1 Primar	d 1	my					
				/		7					
						***************************************	***************************************				
***********	***************************************										
							Control Control (Control (Cont				
		arrain - Indexesor Stages	S AND RECESSION ENGAN								
		<u> </u>	·····	******************							
***************************************		······		••••••			*****				
	********			******************			*******************				
	***************				reneros som nu	WWW.					
		1 8						***************************************			
	**************			•••••				•••			

*********			•••••	•			************				
	•••••						*********				

			1		A.						
			turi actori irrossos († Salette			1	*************	1			
	eresensoensoensoensoensoensoensoensoensoen	ADDRESS CONTRACTOR		***************************************	************			The second second second			
	****************		·····								
omments:	Odours (YES	NOL NAPLI	SH (YES //NO), Sheen (YES /	NO). Stead	v State Ach	ieved (YFS / 4	NOV			
	,						•				
SI Used: 🗸	f	Yedium	c: []	(0		. /					
	э ү	wer um	8114	Gael,	low	Kelra	Te	(4)			
ested By:	T	And	Remarks:	/			Δ				
ested by.			- Steady state	conditions							
		28/5/22		the pH less than	0.2 unite di	fference in th	ne conductive	(less than 100/			
ate Tested:	1 4	10/3/11	and SWL stat	e/not in drawdow	o.z umio, u n	noronce in tr	ie conductivelt)	1699 HIBH 10%			
						al conterio	II				
hecked By:			I will influent 3 h	ioriitoring well vol	unes purge	a, uniess we	ıı purged until it	is effectively dry			
ate:	1 4 4 //	6/2022									

JF	(Er	vii	or	nm	en	ts	1			
Client:	Health Infrastr	ucture					Job No.:	;		E33780PL
Project:	Proposed CAN	/IHS Building	*************		**********	*********	Well No.	:	T	701
Location:	Nepean Hospi	tal, Derby St	eet, KINGS	WOOD, NSW	······································		Depth (n	n):		6m
WELL FIN	ISH DETAILS					-				
	G	atic Cover [X	Standpi	пеП			Other (de	scriba)	294
WELL DEV	ELOPMENT DE			Totaliapi	Po			Totalor (des	scribe)	
Method:		III. Suppostore and set of	Develo	princit	SWL - Be	fore (m):	6		4.1	7
Date:			28/5		Time - Be				7/10	
Undertake	n By:		Avn	1.4	SWL - Af	ter (m):	***********			
Total Vol. I					Time - Af	*********			[1:4	C
PID Readir			07						T	*
Comments			() T							
	MENT MEASUR	EMENTS					_	1		
Vol	ume Removed		Temp (°C)		DO		EC	Τ	. Т	FI. ()0
	(L)			(1	ng/L)	(µS	S/cm)	Pi	- 0	Eh (mV)
	3		22.1	S.	7	152	277	The second second second second	28	227.5
	4		22.1	5	· (16	450	6.3	5	209.5
	6		12.5	, 5	4	19	120	65	0	1609
	******************		Sell	mps	4	7				
Comments	Odours (YES	/ NO) NA	PL/PSH (Y)	ES / J90), Sh	een (YES (NO), Ste	ady State	Achieved (YES (NO	
YSI Used:	4	Meelin	m	ς; 11- arks:		\sim		. re		200
Date Tested	l:	28/5/2	2 - Diff	ady state cond erence in the p SWL stable/no	pH less than		difference	in the cond	uctiveity les	ss than 10%
***********				imum 3 monito			and union	e well some	d uetil it te i	offootively de
Checked By				milioni o monit	oning well vo	umes pur	g o u, unies	s wen purge	u unul II IS (enecuvery ary
Date:	14/6	5/2022								

Date:

WATER QUALITY METER CALIBRATION FORM

Client: Health Infrastr	ucture
Project: Proposed CAM	IHS Building
Location: Nepean Hospit	al, Derby Street, KINGSWOOD, NSW
Job Number: E33780PL	
D	DISSOLVED OXYGEN
Make:	Model:
Date of calibration: 28 5 12	Name of Calibrator: AM
Span value: 70% to 130%	
Measured value: 99	
Measured reading Acceptable (Yes/No):	
	рН
Make:	Model:
Date of calibration: 2815/22	Name of Calibrator:
Buffer 1: Theoretical pH = 7.01± 0.01	Expiry date: 1/22 Lot No: 373185
Buffer 2: Theoretical pH = 4.01± 0.01	Expiry date: 4/23 Lot No: 380832
Measured reading of Buffer 1: 6.97	-M. M *
Measured reading of Buffer 2: 397	
Slope:	Measured reading Acceptable (Yes/No):
	EC
Make:	Model:
Date: 28/5/22 Name of Calibr	
Calibration solution: Constituting Standard	Expiry date: 5/23 Lot No: 381243
Theoretical conductivity at temperature (see solution	on container): 125/ µS/cm
Measured conductivity: /ο (6 μS/cm	Measured reading Acceptable (Yes/No):
	REDOX
Make:	Model:
Date of calibration: 2815/12	Name of Calibrator: Am
Calibration solution: OLP Test Solution	Expiry date: 11/16 Lot No: 7221
Theoretical redox value: 240mV	
Measured redox reading: 239.5 mV	Measured reading Acceptable (Yes)No):

Appendix I: PSI Information

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

ABC: Ambient Background Concentration PCBs: Polychlorinated Biphenyls

ACM: Asbestos Containing Material PCE: Perchloroethylene (Tetrachloroethylene or Teterachloroethene)

ADWG: Australian Drinking Water Guidelines **pH**_{KCL}: pH of filtered 1:20, 1M KCL extract, shaken overnight

AF: Asbestos Fines pH_{ox}: pH of filtered 1:20 1M KCl after peroxide digestion

ANZG Australian and New Zealand Guidelines PQL: Practical Quantitation Limit

B(a)P: Benzo(a)pyrene **RS:** Rinsate Sample

CEC: Cation Exchange Capacity RSL: Regional Screening Levels
CRC: Cooperative Research Centre RSW: Restricted Solid Waste
CT: Contaminant Threshold SAC: Site Assessment Criteria

Ells: Ecological Investigation Levels SCC: Specific Contaminant Concentration

Ests: Ecological Screening Levels
 Fa: Chromium reducible sulfur
 Fa: Peroxide oxidisable Sulfur
 Groundwater Investigation Levels
 SSA: Site Specific Assessment

GIL:Groundwater Investigation LevelsSSA:Site Specific AssessmentGSW:General Solid WasteSSHSLs: Site Specific Health Screening Levels

Health Investigation Levels TAA: Total Actual Acidity in 1M KCL extract titrated to pH6.5

HSLs: Health Screening Levels **TB:** Trip Blank

HSL-SSA: Health Screening Level-SiteSpecific Assessment TCA: 1,1,1 Trichloroethane (methyl chloroform)

kg/Lkilograms per litreTCE:Trichloroethylene (Trichloroethene)NA:Not AnalysedTCLP:Toxicity Characteristics Leaching ProcedureNC:Not CalculatedTPA:Total Potential Acidity, 1M KCL peroxide digest

NEPM: National Environmental Protection Measure TS: Trip Spike

NHMRC: National Health and Medical Research Council TRH: Total Recoverable Hydrocarbons
NL: Not Limiting TSA: Total Sulfide Acidity (TPA-TAA)

NSL: No Set Limit UCL: Upper Level Confidence Limit on Mean Value OCP: Organochlorine Pesticides USEPA United States Environmental Protection Agency

OPP: Organophosphorus Pesticides

VOCC: Volatile Organic Chlorinated Compounds

Voc: Volatile Organic Chlorinated Compour

PAHs: Polycyclic Aromatic Hydrocarbons WHO: World Health Organisation %w/w: weight per weight

Table Specific Explanations:

Parts per million

ppm:

HIL Tables:

- The chromium results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.
- Carcinogenic PAHs is a toxicity weighted sum of analyte concentrations for a specific list of PAH compounds relative to B(a)P. It is also referred to as the B(a)P Toxic Equivalence Quotient (TEQ).
- Statistical calculations are undertaken using ProUCL (USEPA). Statistical calculation is usually undertaken using data from fill samples.

EIL/ESL Table:

Site specific ABC values for specific metals have been adopted.

Waste Classification and TCLP Table:

- Data assessed using the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014).
- The assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion.
- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde.

QA/QC Table:

- Field blank, Inter and Intra laboratory duplicate results are reported in mg/kg.
- Trip spike results are reported as percentage recovery.
- Field rinsate results are reported in μg/L.

TABLE S1

SOIL LABORATORY RESULTS COMPARED TO NEPM 2013.

HIL-D: 'Commercial/Industrial'

						HEAVY N	METALS					PAHs			ORGANOCHL	ORINE PESTI	CIDES (OCPs)			OP PESTICIDES (OPPs))	
All data in mg/kg unless	s stated otherwi	ise	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Total PAHs	Carcinogenic PAHs	НСВ	Endosulfan	Methoxychlor	Aldrin & Dieldrin	Chlordane	DDT, DDD & DDE	Heptachlor	Chlorpyrifos	TOTAL PCBs	ASBESTOS FIBRES
PQL - Envirolab Services	5		4	0.4	1	1	1	0.1	1	1	-	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	100
Site Assessment Criteria	a (SAC)		3000	900	3600	240000	1500	730	6000	400000	4000	40	80	2000	2500	45	530	3600	50	2000	7	Detected/Not Detected
Sample Reference	Sample Depth	Sample Description																				
BH601	1.6-1.8	Fill: Gravelly clay	5	<0.4	12	31	13	0.2	13	50	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH601 - [LAB_DUP]	1.6-1.8	Fill: Gravelly clay	5	<0.4	11	35	12	0.1	14	49	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH601	2.4-2.6	Claystone	<4	<0.4	12	36	11	<0.1	37	82	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
ВН602	0.3-0.4	F: Silty clay	5	<0.4	15	24	12	<0.1	10	48	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
ВН602	0.3-0.5	F: Silty clay	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
ВН602	1.0-1.2	Silty clay	<4	<0.4	11	26	10	<0.1	8	45	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
вн603	0-0.1	F: Sandy silty clay	5	<0.4	12	23	15	<0.1	9	75	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH603 - [LAB_DUP]	0-0.1	F: Sandy silty clay	5	<0.4	12	20	14	<0.1	9	68	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
ВН603	0.5-0.6	Silty clay	<4	<0.4	10	78	14	<0.1	8	54	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
ВН603	0.7-0.8	Silty clay	<4	<0.4	10	28	11	<0.1	5	29	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ВН604	0.15-0.3	Fill; Gravelly sand	4	<0.4	13	38	19	<0.1	9	44	20	3.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
ВН604	0.3-0.5	F: Silty clay	<4	<0.4	13	18	14	<0.1	15	47	2.9	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
ВН604	1.3-1.5	Silty clay	12	<0.4	11	24	12	<0.1	8	47	0.71	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SDUP1	-	F: Sandy silty clay	6	<0.4	20	27	17	<0.1	14	100	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Number of Sam	ples		13	13	13	13	13	13	13	13	13	13	8	8	8	8	8	8	8	8	8	7
Maximum Value			12	<pql< td=""><td>20</td><td>78</td><td>19</td><td>0.2</td><td>37</td><td>100</td><td>20</td><td>3.5</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	20	78	19	0.2	37	100	20	3.5	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<>	<pql< td=""><td>Not Detected</td></pql<>	Not Detected

Concentration above the SAC Concentration above the PQL

VALUE Bold

TABLE S2

SOIL LABORATORY RESULTS COMPARED TO HSLs

All data in mg/kg unless stated otherwise

					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Field PID Measurement
PQL - Envirolab	Services				25	50	0.2	0.5	1	1	1	ppm
NEPM 2013 HSL	Land Use Cat	egory					HSL-D:	COMMERCIAL/IND	USTRIAL			
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category								
BH601	1.6-1.8	Fill: Gravelly clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH601 - [LAB_DUP]	1.6-1.8	Fill: Gravelly clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH601	2.4-2.6	Claystone	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	1
BH602	0.3-0.4	F: Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH602	1.0-1.2	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH603	0-0.1	F: Sandy silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH603 - [LAB_DUP]	0-0.1	F: Sandy silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH603	0.5-0.6	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH603	0.7-0.8	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH604	0.15-0.3	Fill; Gravelly sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	1
BH604	0.3-0.5	F: Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH604	1.3-1.5	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
SDUP1	-	F: Sandy silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	-
Total Number	Total Number of Samples				13	13	13	13	13	13	13	12
Maximum Va	num Value				<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>1</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>1</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>1</td></pql<></td></pql<>	<pql< td=""><td>1</td></pql<>	1

Concentration above the SAC

VALUE

Concentration above the PQL

Bold

The guideline corresponding to the concentration above the SAC is highlighted in grey in the Site Assessment Criteria Table below

HSL SOIL ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
BH601	1.6-1.8	Fill: Gravelly clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH601 - [LAB_DUP]	1.6-1.8	Fill: Gravelly clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH601	2.4-2.6	Claystone	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH602	0.3-0.4	F: Silty clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH602	1.0-1.2	Silty clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH603	0-0.1	F: Sandy silty clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH603 - [LAB_DUP]	0-0.1	F: Sandy silty clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH603	0.5-0.6	Silty clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH603	0.7-0.8	Silty clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH604	0.15-0.3	Fill; Gravelly sand	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH604	0.3-0.5	F: Silty clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
BH604	1.3-1.5	Silty clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL
SDUP1	-	F: Sandy silty clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL

TABLE S3 SOIL LABORATORY RESULTS COMPARED TO MANAGEMENT LIMITS All data in mg/kg unless stated otherwise

			C ₆ -C ₁₀ (F1) plus BTEX	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)
PQL - Envirolat	Services		25	50	100	100
NEPM 2013 La	nd Use Category			COMMERCIAL	/INDUSTRIAL	
Sample Reference	Sample Depth	Soil Texture				
BH601	1.6-1.8	Coarse	<25	<50	<100	<100
BH601 - [LAB_DUP]	1.6-1.8	Coarse	<25	<50	<100	<100
BH601	2.4-2.6	Coarse	<25	<50	<100	<100
BH602	0.3-0.4	Coarse	<25	<50	<100	<100
BH602	1.0-1.2	Coarse	<25	<50	<100	<100
BH603	0-0.1	Coarse	<25	<50	<100	<100
BH603 - [LAB_DUP]	0-0.1	Coarse	<25	<50	<100	<100
BH603	0.5-0.6	Coarse	<25	<50	<100	<100
BH603	0.7-0.8	Coarse	<25	<50	<100	<100
BH604	0.15-0.3	Coarse	<25	<50	510	470
BH604	0.3-0.5	Coarse	<25	<50	<100	<100
BH604	1.3-1.5	Coarse	<25	<50	<100	<100
SDUP1	-	Coarse	<25	<50	<100	<100
Total Number	of Samples		13	13	13	13
Maximum Val	ue		<pql< td=""><td><pql< td=""><td>510</td><td>470</td></pql<></td></pql<>	<pql< td=""><td>510</td><td>470</td></pql<>	510	470

Concentration above the SAC

VALUE

Concentration above the PQL Bold

MANAGEMENT LIMIT ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Soil Texture	C ₆ -C ₁₀ (F1) plus BTEX	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)
BH601	1.6-1.8	Coarse	700	1000	3500	10000
BH601 - [LAB DUP]	1.6-1.8	Coarse	700	1000	3500	10000
BH601	2.4-2.6	Coarse	700	1000	3500	10000
BH602	0.3-0.4	Coarse	700	1000	3500	10000
BH602	1.0-1.2	Coarse	700	1000	3500	10000
BH603	0-0.1	Coarse	700	1000	3500	10000
BH603 - [LAB_DUP]	0-0.1	Coarse	700	1000	3500	10000
BH603	0.5-0.6	Coarse	700	1000	3500	10000
BH603	0.7-0.8	Coarse	700	1000	3500	10000
BH604	0.15-0.3	Coarse	700	1000	3500	10000
BH604	0.3-0.5	Coarse	700	1000	3500	10000
BH604	1.3-1.5	Coarse	700	1000	3500	10000
SDUP1	-	Coarse	700	1000	3500	10000

TABLE S4
SOIL LABORATORY RESULTS COMPARED TO DIRECT CONTACT CRITERIA
All data in mg/kg unless stated otherwise

Analyte		C ₆ -C ₁₀	>C ₁₀ -C ₁₆	>C ₁₆ -C ₃₄	>C ₃₄ -C ₄₀	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PID
PQL - Envirolab Service	es	25	50	100	100	0.2	0.5	1	1	1	
CRC 2011 -Direct conta	act Criteria	26,000	20,000	27,000	38,000	430	99,000	27,000	81,000	11,000	
Site Use				co	MMERCIAL/INI	DUSTRIAL - DIRE	CT SOIL CONT	ACT			
Sample Reference	Sample Depth										
BH601	1.6-1.8	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH601 - [LAB_DUP]	1.6-1.8	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH601	2.4-2.6	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	1
BH602	0.3-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH602	1.0-1.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH603	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH603 - [LAB_DUP]	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH603	0.5-0.6	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH603	0.7-0.8	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH604	0.15-0.3	<25	<50	510	470	<0.2	<0.5	<1	<3	<1	1
BH604	0.3-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH604	1.3-1.5	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
SDUP1	-	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	-
Total Number of Sam	ples	13	13	13	13	13	13	13	13	13	12
Maximum Value		<pql< td=""><td><pql< td=""><td>510</td><td>470</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>510</td><td>470</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	510	470	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>1</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>1</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>1</td></pql<></td></pql<>	<pql< td=""><td>1</td></pql<>	1

Concentration above the SAC Concentration above the PQL

VALUE Bold

TABLE S5
ASBESTOS QUANTIFICATION - FIELD OBSERVATIONS AND LABORATORY RESULTS

				LABORATOR	Y DATA			·			
Lab Report Number	Sample refeference	Sample Depth	Sample Mass (g)	Asbestos ID in soil (AS4964) >0.1g/kg	Trace Analysis	Total Asbestos (g/kg)	Asbestos ID in soil <0.1g/kg	ACM >7mm Estimation (g)	FA and AF Estimation (g)	>7mm	FA and Estimat %(w/v
								0.05		0.01	0.001
266432	BH602	0.3-0.5	443.15	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.00
262113	BH603	0-0.1	558.94	detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	_	<0.01	<0.00
262113	BH603	0.5-0.6	512.49	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.00

SOIL LABORATORY RESULTS COMPARED TO NEPM 2013 EILS AND ESLS

All data in mg/kg unless stated otherwise

Land Use Category												COM	IMERCIAL/INDUS	TRIAL									
									AGED HEAV	Y METALS-EILs			EI	Ls					ESLs				
				pН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
PQL - Envirolab Services				-	1	-	4	1	1	1	1	1	1	0.1	25	50	100	100	0.2	0.5	1	1	0.05
Ambient Background Con	ncentration (Al	BC)		-	-	-	NSL	13	28	163	5	122	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample Reference	Sample Depth	Sample Description	Soil Texture																				
BH601	1.6-1.8	Fill: Gravelly clay	Coarse	7.35	21.5	41.5	5	12	31	13	13	50	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH601 - [LAB_DUP]	1.6-1.8	Fill: Gravelly clay	Coarse	7.35	21.5	41.5	5	11	35	12	14	49	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH601	2.4-2.6	Claystone	Coarse	7.35	21.5	41.5	<4	12	36	11	37	82	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH602	0.3-0.4	F: Silty clay	Coarse	7.35	21.5	41.5	5	15	24	12	10	48	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH602	1.0-1.2	Silty clay	Coarse	7.35	21.5	41.5	<4	11	26	10	8	45	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH603	0-0.1	F: Sandy silty clay	Coarse	7.35	21.5	41.5	5	12	23	15	9	75	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH603 - [LAB_DUP]	0-0.1	F: Sandy silty clay	Coarse	7.35	21.5	41.5	5	12	20	14	9	68	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH603	0.5-0.6	Silty clay	Coarse	7.35	21.5	41.5	<4	10	78	14	8	54	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH603	0.7-0.8	Silty clay	Coarse	7.35	21.5	41.5	<4	10	28	11	5	29	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH604	0.15-0.3	Fill; Gravelly sand	Coarse	7.35	21.5	41.5	4	13	38	19	9	44	<1	< 0.1	<25	<50	510	470	<0.2	<0.5	<1	<3	2.6
BH604	0.3-0.5	F: Silty clay	Coarse	7.35	21.5	41.5	<4	13	18	14	15	47	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.3
BH604	1.3-1.5	Silty clay	Coarse	7.35	21.5	41.5	12	11	24	12	8	47	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.1
SDUP1	-	F: Sandy silty clay	Coarse	7.35	21.5	41.5	6	20	27	17	14	100	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
Total Number of Sample	s			13	13	13	13	13	13	13	13	13	13	8	13	13	13	13	13	13	13	13	13
Maximum Value				7.35	21.5	41.5	12	20	78	19	37	100	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>510</td><td>470</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2.6</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>510</td><td>470</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2.6</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>510</td><td>470</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2.6</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>510</td><td>470</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2.6</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	510	470	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2.6</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>2.6</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>2.6</td></pql<></td></pql<>	<pql< td=""><td>2.6</td></pql<>	2.6

Concentration above the SAC Concentration above the PQL

VALUE Bold

The guideline corresponding to the elevated value is highlighted in grey in the EIL and ESL Assessment Criteria Table below

EIL AND ESL ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Sample Description	Soil Texture	рН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
BH601	1.6-1.8	Fill: Gravelly clay	Coarse	7.35	21.5	41.5	160	670	350	2000	600	1600	370	640	215	170	1700	3300	75	135	165	180	72
BH601 - [LAB_DUP]	1.6-1.8	Fill: Gravelly clay	Coarse	7.35	21.5	41.5	160	670	350	2000	600	1600	370	640	215	170	1700	3300	75	135	165	180	72
BH601	2.4-2.6	Claystone	Coarse	7.35	21.5	41.5	160	670	350	2000	600	1600	370		215	170	1700	3300	75	135	165	180	72
BH602	0.3-0.4	F: Silty clay	Coarse	7.35	21.5	41.5	160	670	350	2000	600	1600	370	640	215	170	1700	3300	75	135	165	180	72
BH602	1.0-1.2	Silty clay	Coarse	7.35	21.5	41.5	160	670	350	2000	600	1600	370		215	170	1700	3300	75	135	165	180	72
BH603	0-0.1	F: Sandy silty clay	Coarse	7.35	21.5	41.5	160	670	350	2000	600	1600	370	640	215	170	1700	3300	75	135	165	180	72
BH603 - [LAB_DUP]	0-0.1	F: Sandy silty clay	Coarse	7.35	21.5	41.5	160	670	350	2000	600	1600	370	640	215	170	1700	3300	75	135	165	180	72
BH603	0.5-0.6	Silty clay	Coarse	7.35	21.5	41.5	160	670	350	2000	600	1600	370	640	215	170	1700	3300	75	135	165	180	72
BH603	0.7-0.8	Silty clay	Coarse	7.35	21.5	41.5	160	670	350	2000	600	1600	370		215	170	1700	3300	75	135	165	180	72
BH604	0.15-0.3	Fill; Gravelly sand	Coarse	7.35	21.5	41.5	160	670	350	2000	600	1600	370	640	215	170	1700	3300	75	135	165	180	72
BH604	0.3-0.5	F: Silty clay	Coarse	7.35	21.5	41.5	160	670	350	2000	600	1600	370	640	215	170	1700	3300	75	135	165	180	72
BH604	1.3-1.5	Silty clay	Coarse	7.35	21.5	41.5	160	670	350	2000	600	1600	370		215	170	1700	3300	75	135	165	180	72
SDUP1	-	F: Sandy silty clay	Coarse	7.35	21.5	41.5	160	670	350	2000	600	1600	370		215	170	1700	3300	75	135	165	180	72

TABLE S7

SOIL LABORATORY RESULTS COMPARED TO WASTE CLASSIFICATION GUIDELINES

All data in mg/kg unless stated otherwise

						HEAVY I	METALS				P/	AHs		OC/OP	PESTICIDES		Total			TRH				BTEX CON	иРОUNDS		
				Cadasissas	Characteris	C			NII-II	7:	Total	B(a)P	Total	Chloropyrifos	Total Moderately	Total	PCBs	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	Total	Benzene	Toluene	Ethyl	Total	ASBESTOS FIBRES
			Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	PAHs		Endosulfans		Harmful	Scheduled						C ₁₀ -C ₃₆			benzene	Xylenes	
PQL - Envirolab Services			4	0.4	1	1	1	0.1	1	1	-	0.05	0.1	0.1	0.1	0.1	0.1	25	50	100	100	50	0.2	0.5	1	1	100
General Solid Waste CT1			100	20	100	NSL	100	4	40	NSL	200	0.8	60	4	250	50	50	650		NSL		10,000	10	288	600	1,000	-
General Solid Waste SCC	1		500	100	1900	NSL	1500	50	1050	NSL	200	10	108	7.5	250	50	50	650		NSL		10,000	18	518	1,080	1,800	-
Restricted Solid Waste C	T2		400	80	400	NSL	400	16	160	NSL	800	3.2	240	16	1000	50	50	2600		NSL		40,000	40	1,152	2,400	4,000	-
Restricted Solid Waste SO	CC2		2000	400	7600	NSL	6000	200	4200	NSL	800	23	432	30	1000	50	50	2600		NSL		40,000	72	2,073	4,320	7,200	-
Sample Reference	Sample Depth	Sample Description																									
BH601	1.6-1.8	Fill: Gravelly clay	5	<0.4	12	31	13	0.2	13	50	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detected
BH601 - [LAB_DUP]	1.6-1.8	Fill: Gravelly clay	5	<0.4	11	35	12	0.1	14	49	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH601	2.4-2.6	Claystone	<4	<0.4	12	36	11	<0.1	37	82	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detected
BH602	0.3-0.4	F: Silty clay	5	<0.4	15	24	12	<0.1	10	48	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH602	0.3-0.5	F: Silty clay	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
BH602	1.0-1.2	Silty clay	<4	<0.4	11	26	10	<0.1	8	45	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detected
BH603	0-0.1	F: Sandy silty clay	5	<0.4	12	23	15	<0.1	9	75	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detected
BH603 - [LAB_DUP]	0-0.1	F: Sandy silty clay	5	<0.4	12	20	14	<0.1	9	68	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH603	0.5-0.6	Silty clay	<4	<0.4	10	78	14	<0.1	8	54	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detected
BH603	0.7-0.8	Silty clay	<4	<0.4	10	28	11	<0.1	5	29	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH604	0.15-0.3	Fill; Gravelly sand	4	<0.4	13	38	19	<0.1	9	44	20	2.6	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	200	470	670	<0.2	<0.5	<1	<3	NA
BH604	0.3-0.5	F: Silty clay	<4	<0.4	13	18	14	<0.1	15	47	2.9	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detected
BH604	1.3-1.5	Silty clay	12	<0.4	11	24	12	<0.1	8	47	0.71	0.1	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
SDUP1	-	F: Sandy silty clay	6	<0.4	20	27	17	<0.1	14	100	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
																	ļ						ļ				
Total Number of Samp	les		13	13	13	13	13	13	13	13	13	13	8	8	8	8	8	13	13	13	13	13	13	13	13	13	7
Maximum Value			12	<pql< td=""><td>20</td><td>78</td><td>19</td><td>0.2</td><td>37</td><td>100</td><td>20</td><td>2.6</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>200</td><td>470</td><td>670</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	20	78	19	0.2	37	100	20	2.6	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>200</td><td>470</td><td>670</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>200</td><td>470</td><td>670</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>200</td><td>470</td><td>670</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>200</td><td>470</td><td>670</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>200</td><td>470</td><td>670</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>200</td><td>470</td><td>670</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>200</td><td>470</td><td>670</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	200	470	670	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<>	<pql< td=""><td>Not Detected</td></pql<>	Not Detected

Concentration above the CT1 Concentration above SCC1 Concentration above the SCC2 Concentration above PQL

Preliminary (Stage 1) Site Investigation
CAMHS, Nepean Hospital, Derby Street, Kingswood, NSW
E33780PL

Abboratory SDUP1 - <25 <50 <100 <100 <0.2 <0.5 <1 <2 <1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Endrin Endrin Aldehyde Endosulfan II pp- DDT Endrin Aldehyde Endosulfan Sulphate Methoxychlor Azinphos-methyl Grinorpyriphos Chlorpyriphos Chlorpyriphos Chlorpyriphos Endosulfan Sulphate Azinphos-methyl Elomethoate Dimethoate Elinion	ion lon c c c c c y
PQL Envirolab VIC 25 50 100 100 0.2 0.5 1.0 20 1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	01 01 01 01 01 01 01 01 01 01 01 01 01 0	Ethion Malati Malati Parath Parath Arseni Codmi Chrom Chrom Mercur
Intra BH603 0-0.1 <25 <50 <100 <100 <0.2 <0.5 <1 < < < < < < < < < < < < < < < < < <		
SDUP1 - <25 <50 <100 <100 <0.2 <0.5 <1 <2 <1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 4.0 0.4 1.0 1.0 1.0 0.1 1.0 1.0
Trip TS-S1	NA N	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 5 <0.4 12 23 15 <0.1 9 75 NA NA NA NA NA A A 0.1 5 <0.4 12 23 15 <0.1 9 75 NA NA NA NA A 6 <0.4 20 27 17 <0.1 14 100 nc nc nc nc nc 5 nc 16 25 16 nc 115 87.5 nc nc nc nc nc 50% 16% 13% nc 43% 29% NA NA<
Trip TS-52 95% 95% 92% 92% 92% 9 92%		
Field FR1 µg/L 120 NA NA NA <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 NA	NA N	NA
Field FR2 µg/L 130 NA NA NA <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 NA	NA N	NA

1 / 3

BOREHOLE LOG

Borehole No. 601

Client: **HEALTH INFRASTRUCTURE**

Project: PROPOSED CAMHS BUILDING

Location: NEPEAN HOSPITAL, DERBY STREET, KINGSWOOD, NSW

Job No.: 33780LT Method: SPIRAL AUGER R.L. Surface: ~55.4 m

Datum: AHD **Date:** 10/4/21

P	lant	Тур	e: JK305				Log	gged/Checked By: B.Z./A.B.				
Groundwater Record	MAS N20	PLES BD SD	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION OF AUGERING				- 55 — - -	- - - 1—			POTHOLED SECTION: MATERIAL REMOVED BY VACUUM EXCAVATION DOWN TO 1.2m DEPTH				CONCRETE AT SURFACE
ON COMPLETION		-	N = 5 1,2,3	54 — - -	- - - 2-		-	FILL: Gravelly clay, medium to high plasticity, brown mottled dark grey and red brown, fine to medium grained sub-angular and angular ironstone and siltstone gravel.	w>PL			- APPEARS - POORLY - COMPACTED
ONO				53 –	-		-	CLAYSTONE: dark brown, with iron indurated bands.	HW	VL - L L - M		BRINGELLY SHALE VERY LOW 'TC' BIT RESISTANCE LOW TO MODERATE
IN SAZETEIN DER LIGGEN VON EIN ANGERN AUCH TRINGSTROUGHT VERBRINGFON PROTAKT. I ZEIF TROTOGOT DABBELLGGREICH SIEL TOG TOG TEN				52	3 —			as above, but dark brown and grey, with fine to medium grained sandstone bands. REFER TO CORED BOREHOLE LOG		L - IVI		RESISTANCE GROUNDWATER MONITORING WELL INSTALLED TO 9.1m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 9.1m TO 2.6m. CASING 2.6m TO 0.1m. Zmm SAND FILTER PACK 9.1m TO 2.5m. BENTONITE SEAL 2.5m TO 2.0m. BACKFILLED WITH SAND AND CUTTINGS TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER.

COPYRIGHT

2 / 3

CORED BOREHOLE LOG

Borehole No. 601

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED CAMHS BUILDING

Location: NEPEAN HOSPITAL, DERBY STREET, KINGSWOOD, NSW

Job No.: 33780LT Core Size: NMLC R.L. Surface: ~55.4 m

Date: 10/4/21 Inclination: VERTICAL Datum: AHD

	Date: 10/4/21	inclination:	VER	HUA	\L	Di	atum: AHD		
Rook Type, grain characteristics, colour body and minor components and m	Plant Type: JK305	Bearing: N//	A			Lo	ogged/Checked	By: B.Z./A.B.	
Section Comparison Compar		CORE DESCRIPTION			POINT LOAD		DEFECT DETA	AILS	\Box
START CORING AT 2.82m SANDSTONE: fine to medium grained.	Water Loss/Level Barrel Lift RL (m AHD) Depth (m) Graphic Log	texture and fabric, features, inclusions	Weathering	Strength	INDEX I _s (50)	(mm)	Type, orientation, roughness, defe seams, openne	defect shape and ect coatings and ss and thickness	Formation
47	53- 52- 52- 51- 50- 50- 49- 48- 48-	START CORING AT 2.82m SANDSTONE: fine to medium grained, grey and brown, bedded sub-horizontally. Extremely Weathered claystone: silty CLAY, high plasticity, brown, with fine to medium grained angular claystone gravel. LAMINITE: fine to medium grained, grey sandstone (50%), sub-horizontally laminated with dark grey and brown claystone (50%). Extremely Weathered claystone: silty CLAY, high plasticity, dark brown. LAMINITE: fine to medium grained, grey sandstone (50%), sub-horizontally laminated with dark grey and brown claystone (50%). Extremely Weathered claystone: silty CLAY, high plasticity, dark brown, with highly weathered claystone bands. CLAYSTONE: dark grey and brown, sub-horizontally laminated. Extremely Weathered claystone: silty CLAY, high plasticity, dark brown. CLAYSTONE: dark grey, bedded sub-horizontally, carbonaceous. Extremely Weathered claystone: silty CLAY, high plasticity, dark grey and red brown. SANDSTONE: fine to medium grained, grey mottled light brown, bedded at 0-5°, with dark grey claystone laminae.	MW XW MW XW MW XW HW XW HW SW	L - M			roughness, defi seams, openner Specific	ect coatings and sand thickness General Genera	
							 - (8.19m) Be, 2°, Un, S, Cla -		
					1001000 1001000	1 1 1	- 		

K

CORED BOREHOLE LOG

Borehole No. 601

3 / 3

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED CAMHS BUILDING

Location: NEPEAN HOSPITAL, DERBY STREET, KINGSWOOD, NSW

Job No.: 33780LT Core Size: NMLC R.L. Surface: ~55.4 m

Date: 10/4/21 Inclination: VERTICAL Datum: AHD

Plant Type: JK305 Bearing: N/A Logged/Checked By: B.Z./A.B.

'	716	anı	ıyp	e: .	JK305	Bearing: N	Α			L	_oggea/Cnecke	d By: B.∠./A.B.	
						CORE DESCRIPTION			POINT LOAD		DEFECT DE	TAILS	
Water	-oss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I _s (50)	SPACING (mm)	Type, orientation roughness, oseams, open	CRIPTION on, defect shape and lefect coatings and ness and thickness General	Formation
-		-	ъ.			CLAYSTONE: as above	FR	L-M	0.30	7 6 7 6	Ореспіс	General	╫╢
			-			END OF BOREHOLE AT 9.10 m				1111	_		
JK 9024 LBGLB Log JK CORED BOREHOLE - MASTER 33780LT KINGSWOOD GPJ - <-Chawngfle>> 04/05/2021 12:49 10.01 (0001 Daige Lab and in Shu Tool - DGD) LIb. JK 9.02.4 2019-05-31 Ppj. JK 901 0.2018-05-20			46	11									

BOREHOLE LOG

Borehole No. 602

1 / 2

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED CAMHS BUILDING

Location: NEPEAN HOSPITAL, DERBY STREET, KINGSWOOD, NSW

Job No.: 33780LT Method: SPIRAL AUGER R.L. Surface: ~53.6 m

Date: 10/4/21 **Datum:** AHD

"	ate:	10/4	+/∠ I						Di	atum:	АПО	
P	lant	Тур	e: JK305				Lo	gged/Checked By: B.S./A.B.				
Groundwater	SAMP CONTRACTOR	PLES BQ SQ	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION				-			-	CONCRETE: 100mm.t over ROADBASE: 50mm.t FILL: Silty clay, medium to high	w~PL			-
56			N = 8 1,4,4	53 – - -	- 1-		CH	plasticity, brown mottled dark grey and red brown, trace of fine to medium grained ironstone gravel, ash and slag. Silty CLAY: high plasticity, grey mottled brown and red brown, trace of fine to medium grained ironstone gravel, and	w~PL	VSt	200 280 290	RESIDUAL
0.20102-03-20			N > 33 12,15,18/ 100mm	52 -	-		CI	roots. Silty CLAY: medium plasticity, red brown and grey, with ironstone bands grading into extremely weathered bedrock.	. w <pl< td=""><td>Hd</td><td>>600 >600 >600</td><td>- - - - - -</td></pl<>	Hd	>600 >600 >600	- - - - - -
GAROZZZE I 250 100.000 U DBBBLLBBBBB BBBBBBBBBBBBBBBBBBBBBBBBB			REFUSAL	51 —	2		-	Extremely Weathered claystone: silty CLAY, high plasticity, red brown and grey, with ironstone bands. CLAYSTONE: dark grey and brown, with	XW	Hd L - M		BRINGELLY SHALE VERY LOW 'TC' BIT RESISTANCE BANDS
IN 9024 LIBUSED DIG UN AUGENFRÜLE - MASIEN MOGNUTULIGE ON GENERALINGEN	DVBIG			49	5			iron indurated and sandstone bands. REFER TO CORED BOREHOLE LOG				RESISTANCE

COPYRIGHT

火

CORED BOREHOLE LOG

Borehole No. 602

2 / 2

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED CAMHS BUILDING

Location: NEPEAN HOSPITAL, DERBY STREET, KINGSWOOD, NSW

Job No.: 33780LT Core Size: NMLC R.L. Surface: ~53.6 m

Date: 10/4/21 Inclination: VERTICAL Datum: AHD

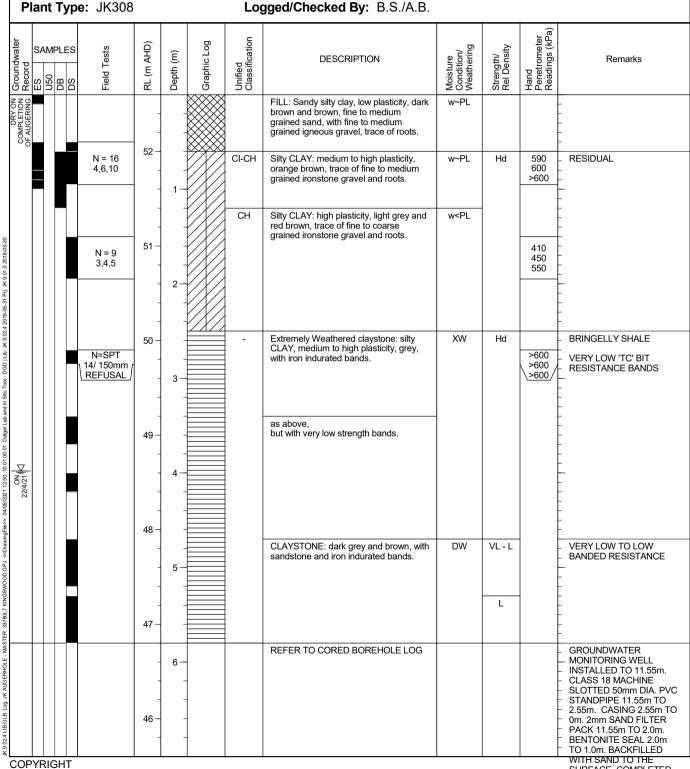
Plant Type: JK305 Bearing: N/A Logged/Checked By: B.S./A.B.

Plan	it Typ	e: .	JK305	Bearing: N	/A			Logged/Checked By: B.S./A.B.						
Water Loss\Level Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	CORE DESCRIPTION Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	POINT LOAD STRENGTH INDEX I _s (50)	SPACING (mm)	DEFECT DETAILS DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation				
	49 –	- - - - -		START CORING AT 4.50m SANDSTONE: fine to medium grained, grey, bedded at 0-5°, with dark grey	MW	L - M	0.20		(4.55m) Be, 0°, P, S, Clay Vn (4.58m) J, 85°, Un, R, Fe Ct					
LING WILL THAT THE CAN SUCK A ROLL FOR THE CAN SUCK A ROLL OF DECISION OF THE CAN SUCK A ROLL OF THE CAN SUCK A RO	48	5— 5—		CLAYSTONE: dark grey, bedded sub-horizontally. CLAYSTONE: dark grey, bedded sub-horizontally, with fine grained grey sandstone laminae.		L VL L	0.30		— (4.76m) J, 84°, Un, R, Fe Ct — (5.05m) J, 79°, Un, R, Fe Ct — (5.15m) CS, 0°, 20 mm.t — (5.25m) Cr, 0°, 50 mm.t — (5.57m) XWS, 0°, 8 mm.t — (5.79m) J, 90°, Un, S, Cn — (6.82m) CS, 0°, 1 mm.t — (5.96m) J, 90°, Un, S, Cn — (6.14m) Be, 0°, P, S, Fe Sn — (6.20m) CS, 0°, 1 mm.t — (6.28m) CS, 0°, 2 mm.t — (6.34m) CS, 0°, 2 mm.t — (6.34m) CS, 0°, 2 mm.t — (6.35m) CS, 0°, 1 mm.t — (6.55m) CS, 0°, 1 mm.t — (6.55m) J, 90°, P, S, Clay Vn — (6.70m) XWS, 0°, 100 mm.t — (6.85m) J, 42°, Un, S, Clay Ct	υ				
100% RETURN	46 -	8— 		CLAYSTONE: dark grey, bedded sub-horizontally.	HW	VL L	0.030 1 1 0.030 1 1 1 1 1 1 1 1 1	260 69 69		Bringelly Shale				
MATERIAL IN AN CATED BOARDOLE - INVO EN STOLEN NINSWOODS - INVO EN CATED BOARDOLE - INVO EN CATE	44	9		CLAYSTONE: dark grey, bedded sub-horizontally, with fine grained grey sandstone laminae.	FR	L-M	*0.20		(9.92m) CS, 0°, 3 mm.t					
2000	-	-	-	END OF BOREHOLE AT 10.70 m	ED A OT			660 660 66 66						

BOREHOLE LOG

Borehole No. 603

1 / 2


Client: HEALTH INFRASTRUCTURE

Project: PROPOSED CAMHS BUILDING

Location: NEPEAN HOSPITAL, DERBY STREET, KINGSWOOD, NSW

Job No.: 33780LT Method: SPIRAL AUGER R.L. Surface: ~52.6 m

Date: 17/2/21 **Datum:** AHD

WITH SAND TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER.

CORED BOREHOLE LOG

Borehole No. 603

2 / 2

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED CAMHS BUILDING

Location: NEPEAN HOSPITAL, DERBY STREET, KINGSWOOD, NSW

Job No.: 33780LT Core Size: NMLC R.L. Surface: ~52.6 m

Date: 17/2/21 Inclination: VERTICAL Datum: AHD

Plant Type: JK308 Bearing: N/A Logged/Checked By: B.S./A.B.

					CORE DESCRIPTION			POINT LOAD		FECT DETAILS	
Water Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I _s (50)		DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness iffic General	Formation
		- - 47 –	- - - - -		START CORING AT 5.80m						
075000		-	6 - - - - -		CLAYSTONE: grey and brown, bedded sub-horizontally.	MW	L			n) Ji, 90°, Un	
5.0Z.4 ZU 19-03-5 1 TJ, VI SV. 1-2-		46	7— - - 7— -		CLAYSTONE: grey, bedded sub-horizontally.	HW	VL	•0.20 	(6.90r (6.95r (6.99r (7.09r	n) CS, 0°, 4 mm.t n) XWS, 0°, 50 mm.t n) J, 60°, P, S, Fe Sn n) J, 30°, P, S, Fe Sn n) XWS, 0°, 70 mm.t n) XWS, 0°, 100 mm.t	
חפח ו רום: יזע ג		45 –	-			MW	L	0.20		n) XWS, 0°, 25 mm.t	
and in Situ 1001		-	8 -		Extremely Weathered claystone: silty CLAY, medium plasticity, grey, with very low strength bands.	HW	VL			n) J, 80°, P, S, Cn n) XWS, 0°, 120 mm.t	
SSYBUL I KINSSWOODGAP «CLAMMIGFRES» DAUGZEZT TZSST TUDT UDD TARBE LAB BIRD III SIR 1 DIG • DGUI LID: JIK SEZA ZETSGEST FIF JA 1901 DZUTSASZASZASZASZASZASZASZASZASZASZASZASZASZ		- 44 - - -	- - - - - 9 —		CLAYSTONE: grey, bedded at 0-5°.			0.050		n) XWS, 0°, 15 mm.t n) J, 90°, P, S, Cn	Bringelly Shale
NINGSWOOD.GFO << Drawing Files		43	10 —		as above, but with fine grained sandstone laminae.	FR	L	0.30		n) XWS, 0°, 40 mm.t	
N 9/024 LIBIGEB LOG JK COREU BUREHOLE - MASTEK 33/001 I		- 42 - - -	- - - - - 11 —		SANDSTONE: fine grained, grey, with dark grey claystone laminae.	_	M - H	0.70 0.70 1 1 1 1 40.50 1 1 40.50		2m) Be, 0°, P, R, Clay Ct	
LE Leg JK COR		- - 41-	- - -					•1.5		3m) XWS, 0°, 20 mm.t	
JN 9:02:1 EIE.		-	- - -		END OF BOREHOLE AT 11.55 m				2900 5900 1 5900 1 1 1 1 1 1 1 1 1		

BOREHOLE LOG

604 1 / 3

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED CAMHS BUILDING

Location: NEPEAN HOSPITAL, DERBY STREET, KINGSWOOD, NSW

Job No.: 33780LT Method: SPIRAL AUGER R.L. Surface: ~52.8 m

Date: 11/4/21 **Datum**: AHD

"	ate	: 11/4	1/21			Datum: AHD							
P	lan	t Typ	e: JK305				Lo	gged/Checked By: B.Z./A.B.					
Groundwater	SAMPLES DB Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks	
AN SOCIAL ELEGICE DOS ON PROCESSION CONTRACTOR ON CONTRACT	Or ADDENING TOTAL		N = 8 3,4,4 N = 38 7,11,27	4Ε) 12 52 - 51 - 50 - 50 - 50 - 50 - 50 - 50 - 50	3 — 3 — 3 — 4 — 5 — 6 — 6 — 6 — 6 — 6 — 6 — 6 — 6 — 6	Graphic	Cassific	CONCRETE: 90mm.t over ROADBASE: 210mm.t FILL: Silty clay, medium to high plasticity, brown mottled dark grey, trace of fine to medium grained sub-angular ironstone gravel, glass fragments, ash and slag. Silty CLAY: high plasticity, brown mottled yellow brown, trace of fine to medium grained sub-angular ironstone gravel. as above, but medium plasticity, brown and grey, with ironstone bands grading into extremely weathered claystone: silty CLAY, high plasticity, grey and brown. CLAYSTONE: grey and dark brown.	Moistura Moi	NSt Hd Rel Der	300 330 320 450 550 >600	RESIDUAL - RESIDUAL - BRINGELLY SHALE - VERY LOW 'TC' BIT RESISTANCE - LOW RESISTANCE WITH VERY LOW BANDS	
JN 3.02.4 EID.OLLO LOS OL				46 –	-							- - - - -	

COPYRIGHT

Borehole No.

CORED BOREHOLE LOG

2 / 3

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED CAMHS BUILDING

Location: NEPEAN HOSPITAL, DERBY STREET, KINGSWOOD, NSW

Job No.: 33780LT Core Size: NMLC R.L. Surface: ~52.8 m

Date: 11/4/21 Inclination: VERTICAL Datum: AHD

Р	Plant Type:		e: .	JK305	Bearing: N/	Ά		Logged/Checked By: B.Z./A.B.				
Water Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	CORE DESCRIPTION Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	POINT LOAD STRENGTH INDEX I _s (50)	SPACING DESCRIPTION (mm) Type, orientation, defect shape and roughness, defect coatings and	Formation		
124 LBGGE GO JK CORED BORREHOLE - MASTER 35/80LT KINGSWOODGAY «CHAMIGNES» UNDUSUN LARGE LBGGE BORNEN GO JK ANEUS JK ANEUS JK ANEUS JK CORED BORREHOLE - MASTER 35/80LT KINGSWOODGAY «CHAMIGNES» TOUT 100" LBGGE BORNEN GO JK ANEUS J		50	3		START CORING AT 2.93m CLAYSTONE: grey and dark brown, bedded sub-horizontally. NO CORE 0.25m CLAYSTONE: grey and dark brown, bedded sub-horizontally. SANDSTONE: fine to medium grained, grey, bedded sub-horizontally at 0.5°, with sub-horizontally grey claystone laminae. LAMINITE: fine grained grey sandstone (50%) sub-horizontally laminated with dark grey claystone (50%). Extremely Weathered claystone: silty CLAY, medium plasticity, dark brown and dark grey. CLAYSTONE: dark grey, sub-horizontally bedded with fine to medium grained grey, sandstone laminae. CLAYSTONE: dark grey, bedded sub-horizontally.	MW MW HW FR HW	L L VL M VL L - M			Bringelly Shale F		
¥		44 –	-		,				1			

K

CORED BOREHOLE LOG

Borehole No. 604

3 / 3

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED CAMHS BUILDING

Location: NEPEAN HOSPITAL, DERBY STREET, KINGSWOOD, NSW

Job No.: 33780LT Core Size: NMLC R.L. Surface: ~52.8 m

Date: 11/4/21 Inclination: VERTICAL Datum: AHD

Plant Type: JK305 Bearing: N/A Logged/Checked By: B.Z./A.B

P	Plant Type: JK305				Bearing: N	Α			Logged/Checked By: B.Z./A.B.					
					CORE DESCRIPTION			POINT LOAD		DEFECT DETAILS				
Water	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX Is (50)	SPACING (mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation			
-	╁				CLAYSTONE: as above	HW	VL			_	+			
		-			CLAYSTONE: dark grey, bedded sub-horizontally.	FR	L - M	0.40	1111	——— (9.20m) CS, 2 mm.t				
				1	END OF BOREHOLE AT 9.40 m					_				
		_] .]										
		43 -		1						- -				
		-	10 -	1						-				
		-		1						_				
3		-		_										
		-		-						_				
0.6		42 -]										
2		-	11 -	1						_				
		-		1										
		-								- -				
		_		1						_				
3		41 –		_										
3		41	10	-						_				
0		_	12-	1										
9		_		-						- -				
2		-		1					2900	-				
200		-								_				
8		40 —		1						_				
7		-	13 -	_										
		-		-										
		-		1						_ _				
		-		1										
		39 –		1						-				
		_	14 -	1						_				
		_	`` :	1										
3				-						-				
] .											
		38 –		1						- -				
5		-	15 -	1						-				
200		-		1						<u>-</u> -				
601		-		1						<u></u>				
B.GLB		-		}						L L				
OZ.* L		37 —		-					660 — 260 — 66 — 26 —	_				
ŝ		LOUT												

Appendix J: Guidelines and Reference Documents

Acid Sulfate Soils Management Advisory Committee (ASSMAC), (1998). Acid Sulfate Soils Manual

Australian and New Zealand Environment Conservation Council (ANZECC), (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality

Canadian Council of Ministers of the Environment, (1999). Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)

CRC Care, (2011). Technical Report No. 10 – Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

Contaminated Land Management Act 1997 (NSW)

Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map Series

Managing Land Contamination, Planning Guidelines SEPP55 - Remediation of Land (1998)

National Health and Medical Research Council (NHMRC), (2021). National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011

NSW Department of Environment and Conservation, (2007). Guidelines for the Assessment and Management of Groundwater Contamination

NSW EPA, (1995). Contaminated Sites Sampling Design Guidelines

NSW EPA, (2014). Waste Classification Guidelines - Part 1: Classifying Waste

NSW EPA, (2015). Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997

NSW EPA, (2017). Guidelines for the NSW Site Auditor Scheme, 3rd Edition

NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines

National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)

Olszowy, H., Torr, P., and Imray, P., (1995). Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

Protection of the Environment Operations Act 1997 (NSW)

State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW)

World Health Organisation (WHO), (2008). Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality

Western Australia Department of Health, (2021). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia